These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26214052)

  • 1. A chain kinematic model to assess the movement of lower-limb including wobbling masses.
    Thouzé A; Monnet T; Bélaise C; Lacouture P; Begon M
    Comput Methods Biomech Biomed Engin; 2016; 19(7):707-16. PubMed ID: 26214052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.
    Dumas R; Jacquelin E
    J Biomech; 2017 Sep; 62():47-52. PubMed ID: 28687149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review.
    Begon M; Andersen MS; Dumas R
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29238821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of impact dynamics: wobbling mass model versus rigid body models.
    Gruber K; Ruder H; Denoth J; Schneider K
    J Biomech; 1998 May; 31(5):439-44. PubMed ID: 9727341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower limb joint forces during walking on the level and slopes at different inclinations.
    Alexander N; Schwameder H
    Gait Posture; 2016 Mar; 45():137-42. PubMed ID: 26979896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings.
    Pain MT; Challis JH
    J Biomech; 2006; 39(1):119-24. PubMed ID: 16271595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational model for dynamic analysis of the human gait.
    Vimieiro C; Andrada E; Witte H; Pinotti M
    Comput Methods Biomech Biomed Engin; 2015; 18(7):799-804. PubMed ID: 24156601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanical model to determine the influence of masses and mass distribution on the impact force during running.
    Liu W; Nigg BM
    J Biomech; 2000 Feb; 33(2):219-24. PubMed ID: 10653036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data representation for joint kinematics simulation of the lower limb within an educational context.
    Van Sint Jan S; Hilal I; Salvia P; Sholukha V; Poulet P; Kirokoya I; Rooze M
    Med Eng Phys; 2003 Apr; 25(3):213-20. PubMed ID: 12589719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.
    Pizzolato C; Reggiani M; Modenese L; Lloyd DG
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):436-445. PubMed ID: 27723992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial Sensor-Based Lower Limb Joint Kinematics: A Methodological Systematic Review.
    Weygers I; Kok M; Konings M; Hallez H; De Vroey H; Claeys K
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A soft tissue artefact model driven by proximal and distal joint kinematics.
    Bonci T; Camomilla V; Dumas R; Chèze L; Cappozzo A
    J Biomech; 2014 Jul; 47(10):2354-61. PubMed ID: 24818796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.