These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26214058)

  • 1. A simple model of burst nucleation.
    Baronov A; Bufkin K; Shaw DW; Johnson BL; Patrick DL
    Phys Chem Chem Phys; 2015 Aug; 17(32):20846-52. PubMed ID: 26214058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale modeling of early-stage morphology in solution-processed polycrystalline thin films.
    Patrick DL; Schaaf C; Morehouse R; Johnson BL
    Phys Chem Chem Phys; 2019 May; 21(18):9538-9546. PubMed ID: 31020981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean-field kinetic nucleation theory.
    Kalikmanov VI
    J Chem Phys; 2006 Mar; 124(12):124505. PubMed ID: 16599695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to the theory of homogeneous and heterogeneous nucleation.
    Ruckenstein E; Berim GO; Narsimhan G
    Adv Colloid Interface Sci; 2015 Jan; 215():13-27. PubMed ID: 25498347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal Nucleation without Supersaturation.
    Kovács T; Meldrum FC; Christenson HK
    J Phys Chem Lett; 2012 Jun; 3(12):1602-6. PubMed ID: 26285715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation in a Potts lattice gas model of crystallization from solution.
    Duff N; Peters B
    J Chem Phys; 2009 Nov; 131(18):184101. PubMed ID: 19916592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.
    Langenbach K; Heilig M; Horsch M; Hasse H
    J Chem Phys; 2018 Mar; 148(12):124702. PubMed ID: 29604838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of homogeneous droplet nucleation using large-scale molecular dynamics simulations.
    Ayuba S; Suh D; Nomura K; Ebisuzaki T; Yasuoka K
    J Chem Phys; 2018 Jul; 149(4):044504. PubMed ID: 30068205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved model of homogeneous nucleation for high supersaturation conditions: aluminum vapor.
    Savel'ev AM; Starik AM
    Phys Chem Chem Phys; 2016 Dec; 19(1):523-538. PubMed ID: 27906383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Argon nucleation: bringing together theory, simulations, and experiment.
    Kalikmanov VI; Wölk J; Kraska T
    J Chem Phys; 2008 Mar; 128(12):124506. PubMed ID: 18376942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of the nucleation of water: determining the sticking probability and formation energy of a cluster.
    Tanaka KK; Kawano A; Tanaka H
    J Chem Phys; 2014 Mar; 140(11):114302. PubMed ID: 24655175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary Nucleation by Interparticle Energies. II. Kinetics.
    Ahn B; Bosetti L; Mazzotti M
    Cryst Growth Des; 2022 Jan; 22(1):74-86. PubMed ID: 35024002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth.
    Kim BJ; Tersoff J; Kodambaka S; Reuter MC; Stach EA; Ross FM
    Science; 2008 Nov; 322(5904):1070-3. PubMed ID: 19008438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic approach to the theory of heterogeneous nucleation on soluble particles during the deliquescence stage.
    Djikaev YS; Ruckenstein E
    J Chem Phys; 2006 May; 124(19):194709. PubMed ID: 16729836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation, Growth, and Alignment of Poly(3-hexylthiophene) Nanofibers for High-Performance OFETs.
    Persson NE; Chu PH; McBride M; Grover M; Reichmanis E
    Acc Chem Res; 2017 Apr; 50(4):932-942. PubMed ID: 28234458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle growth analysis by molecular dynamics: spherical seed.
    Suh D; Yasuoka K
    J Phys Chem B; 2011 Sep; 115(36):10631-45. PubMed ID: 21805968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous nucleation: classical formulas as asymptotic limits of the Cahn-Hilliard approach.
    Parra IE; Cordero-Gracia M; Gómez M
    J Chem Phys; 2007 Feb; 126(5):054512. PubMed ID: 17302490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.