BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26214255)

  • 1. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif.
    Williams LK; Zhang X; Caner S; Tysoe C; Nguyen NT; Wicki J; Williams DE; Coleman J; McNeill JH; Yuen V; Andersen RJ; Withers SG; Brayer GD
    Nat Chem Biol; 2015 Sep; 11(9):691-6. PubMed ID: 26214255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase.
    Lo Piparo E; Scheib H; Frei N; Williamson G; Grigorov M; Chou CJ
    J Med Chem; 2008 Jun; 51(12):3555-61. PubMed ID: 18507367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of the anti-diabetic metabolite montbretin A: glucosylation of the central intermediate mini-MbA.
    Irmisch S; Jancsik S; Yuen MMS; Madilao LL; Bohlmann J
    Plant J; 2019 Dec; 100(5):879-891. PubMed ID: 31400245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex.
    Bompard-Gilles C; Rousseau P; Rougé P; Payan F
    Structure; 1996 Dec; 4(12):1441-52. PubMed ID: 8994970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ extension as an approach for identifying novel alpha-amylase inhibitors.
    Numao S; Damager I; Li C; Wrodnigg TM; Begum A; Overall CM; Brayer GD; Withers SG
    J Biol Chem; 2004 Nov; 279(46):48282-91. PubMed ID: 15304511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Tuneable Retaining Glycosidase-Inhibiting Peptides by Mimicry of a Plant Flavonol Warhead.
    Yoshisada R; van Gijzel L; Jongkees SAK
    Chembiochem; 2017 Dec; 18(23):2333-2339. PubMed ID: 28984404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis.
    Kadziola A; Søgaard M; Svensson B; Haser R
    J Mol Biol; 1998 Apr; 278(1):205-17. PubMed ID: 9571044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A.
    Irmisch S; Ruebsam H; Jancsik S; Man Saint Yuen M; Madilao LL; Bohlmann J
    Plant Physiol; 2019 Jul; 180(3):1277-1290. PubMed ID: 31004005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors.
    Nahoum V; Roux G; Anton V; Rougé P; Puigserver A; Bischoff H; Henrissat B; Payan F
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):201-8. PubMed ID: 10657258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of structural and physico-chemical parameters involved in the specificity of binding between alpha-amylases and their inhibitors.
    Da Silva MC; de Sá MF; Chrispeels MJ; Togawa RC; Neshich G
    Protein Eng; 2000 Mar; 13(3):167-77. PubMed ID: 10775658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a pancreatic alpha-amylase bound to a substrate analogue at 2.03 A resolution.
    Qian M; Spinelli S; Driguez H; Payan F
    Protein Sci; 1997 Nov; 6(11):2285-96. PubMed ID: 9385631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Order and disorder: differential structural impacts of myricetin and ethyl caffeate on human amylase, an antidiabetic target.
    Williams LK; Li C; Withers SG; Brayer GD
    J Med Chem; 2012 Nov; 55(22):10177-86. PubMed ID: 23050660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose.
    Gilles C; Astier JP; Marchis-Mouren G; Cambillau C; Payan F
    Eur J Biochem; 1996 Jun; 238(2):561-9. PubMed ID: 8681972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic analyses of catalysis in human pancreatic alpha-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids.
    Rydberg EH; Li C; Maurus R; Overall CM; Brayer GD; Withers SG
    Biochemistry; 2002 Apr; 41(13):4492-502. PubMed ID: 11914097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo design of alpha-amylase inhibitor: a small linear mimetic of macromolecular proteinaceous ligands.
    Dolecková-Maresová L; Pavlík M; Horn M; Mares M
    Chem Biol; 2005 Dec; 12(12):1349-57. PubMed ID: 16356852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrates: A phenol sandwich fights diabetes.
    Bernardi A; Sattin S
    Nat Chem Biol; 2015 Sep; 11(9):635-6. PubMed ID: 26284669
    [No Abstract]   [Full Text] [Related]  

  • 17. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity.
    Maurus R; Begum A; Williams LK; Fredriksen JR; Zhang R; Withers SG; Brayer GD
    Biochemistry; 2008 Mar; 47(11):3332-44. PubMed ID: 18284212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure activity relationships of flavonoids as potent alpha-amylase inhibitors.
    Yuan E; Liu B; Wei Q; Yang J; Chen L; Li Q
    Nat Prod Commun; 2014 Aug; 9(8):1173-6. PubMed ID: 25233601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed "in situ" inhibitor elongation as a strategy to structurally characterize the covalent glycosyl-enzyme intermediate of human pancreatic alpha-amylase.
    Zhang R; Li C; Williams LK; Rempel BP; Brayer GD; Withers SG
    Biochemistry; 2009 Nov; 48(45):10752-64. PubMed ID: 19803533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate and protein-based inhibitors of porcine pancreatic alpha-amylase: structure analysis and comparison of their binding characteristics.
    Machius M; Vértesy L; Huber R; Wiegand G
    J Mol Biol; 1996 Jul; 260(3):409-21. PubMed ID: 8757803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.