These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26214280)

  • 1. A fast self-cleaning SERS-active substrate based on an inorganic-organic hybrid nanobelt film.
    Hao R; Lin J; Wang H; Li B; Li F; Guo L
    Phys Chem Chem Phys; 2015 Aug; 17(32):20840-5. PubMed ID: 26214280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Ag synchronously deposited and doped TiO
    Yang L; Sang Q; Du J; Yang M; Li X; Shen Y; Han X; Jiang X; Zhao B
    Phys Chem Chem Phys; 2018 Jun; 20(22):15149-15157. PubMed ID: 29789850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film.
    Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L
    Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO
    Huang J; Ma D; Chen F; Chen D; Bai M; Xu K; Zhao Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7436-7446. PubMed ID: 28177604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of surface contamination and self-assembled monolayers (SAMs) from silver (Ag) nanorod substrates by plasma cleaning with argon.
    Negri P; Marotta NE; Bottomley LA; Dluhy RA
    Appl Spectrosc; 2011 Jan; 65(1):66-74. PubMed ID: 21211156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel method for preparing controllable and stable silver particle films for surface-enhanced Raman scattering spectroscopy.
    Li X; Xu W; Jia H; Wang X; Zhao B; Li B; Ozaki Y
    Appl Spectrosc; 2004 Jan; 58(1):26-32. PubMed ID: 14727717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter.
    Chen L; Yan H; Xue X; Jiang D; Cai Y; Liang D; Jung YM; Han XX; Zhao B
    Appl Spectrosc; 2017 Jul; 71(7):1543-1550. PubMed ID: 28441033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays.
    Tao Q; Li S; Ma C; Liu K; Zhang QY
    Dalton Trans; 2015 Feb; 44(7):3447-53. PubMed ID: 25604882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates.
    Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z
    Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ fabricated polymer-silver nanocomposite thin film as an inexpensive and efficient substrate for surface-enhanced Raman scattering.
    Hariprasad E; Radhakrishnan TP
    Langmuir; 2013 Oct; 29(42):13050-7. PubMed ID: 24106915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants.
    Zhou N; Meng G; Huang Z; Ke Y; Zhou Q; Hu X
    Analyst; 2016 Oct; 141(20):5864-5869. PubMed ID: 27603329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays.
    Yang X; Zhong H; Zhu Y; Shen J; Li C
    Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon AgNPs/MoS
    Yang J; Chen S; Pan M; Ding Y; Wang S
    Anal Chim Acta; 2024 Jun; 1309():342668. PubMed ID: 38772655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing.
    Kandjani AE; Mohammadtaheri M; Thakkar A; Bhargava SK; Bansal V
    J Colloid Interface Sci; 2014 Dec; 436():251-7. PubMed ID: 25278363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids.
    He X; Wang H; Li Z; Chen D; Liu J; Zhang Q
    Nanoscale; 2015 May; 7(18):8619-26. PubMed ID: 25899553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate.
    Li X; Hu H; Li D; Shen Z; Xiong Q; Li S; Fan HJ
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2180-5. PubMed ID: 22471731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Mass-Produced Substrates for Reproducible Surface-Enhanced Raman Scattering Measurements over Large Areas.
    Reyer A; Prinz A; Giancristofaro S; Schneider J; Bertoldo Menezes D; Zickler G; Bourret GR; Musso ME
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25445-25454. PubMed ID: 28737921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF
    J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.