These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26214280)

  • 21. A simple and highly efficient route to the synthesis of NaLnF4-Ag hybrid nanorice with excellent SERS performances.
    Zhang M; Zhao A; Li D; Sun H; Wang D; Guo H; Gao Q; Gan Z; Tao W
    Analyst; 2012 Oct; 137(19):4584-92. PubMed ID: 22898563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures.
    Tian J; Sang Y; Zhao Z; Zhou W; Wang D; Kang X; Liu H; Wang J; Chen S; Cai H; Huang H
    Small; 2013 Nov; 9(22):3864-72. PubMed ID: 23681828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recyclable three-dimensional Ag nanorod arrays decorated with O-g-C
    Qu LL; Geng ZQ; Wang W; Yang KC; Wang WP; Han CQ; Yang GH; Vajtai R; Li DW; Ajayan PM
    J Hazard Mater; 2019 Nov; 379():120823. PubMed ID: 31276918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic Assembly Route to Construct Reproducible and Recyclable SERS Substrate.
    Zou B; Niu C; Ma M; Zhao L; Wang Y
    Nanoscale Res Lett; 2019 Dec; 14(1):369. PubMed ID: 31807938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates.
    Yang KH; Liu YC; Yu CC
    Langmuir; 2010 Jul; 26(13):11512-7. PubMed ID: 20524629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures.
    Lee CH; Hankus ME; Tian L; Pellegrino PM; Singamaneni S
    Anal Chem; 2011 Dec; 83(23):8953-8. PubMed ID: 22017379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection.
    Fu H; Liu W; Li J; Wu W; Zhao Q; Bao H; Zhou L; Zhu S; Kong J; Zhang H; Cai W
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle-graphene oxide nanocomposites.
    Lin TW; Wu HY; Tasi TT; Lai YH; Shen HH
    Phys Chem Chem Phys; 2015 Jul; 17(28):18443-8. PubMed ID: 26106968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants.
    Ye Y; Chen J; Ding Q; Lin D; Dong R; Yang L; Liu J
    Nanoscale; 2013 Jul; 5(13):5887-95. PubMed ID: 23698652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SERS of molecules that do not adsorb on Ag surfaces: a metal-organic framework-based functionalization strategy.
    Kreno LE; Greeneltch NG; Farha OK; Hupp JT; Van Duyne RP
    Analyst; 2014 Aug; 139(16):4073-80. PubMed ID: 24949495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Raman scattering on lead iodide film.
    Zhu L; Ma H; Wang H; Li P; Guo L; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117336. PubMed ID: 31302565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of antimony by surface-enhanced Raman spectroscopy.
    Panarin AY; Khodasevich IA; Gladkova OL; Terekhov SN
    Appl Spectrosc; 2014; 68(3):297-306. PubMed ID: 24666946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection.
    Potara M; Baia M; Farcau C; Astilean S
    Nanotechnology; 2012 Feb; 23(5):055501. PubMed ID: 22236478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates.
    Liu J; Meng G; Li X; Huang Z
    Langmuir; 2014 Nov; 30(46):13964-9. PubMed ID: 25361441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Performance Real-Time SERS Detection with Recyclable Ag Nanorods@HfO
    Ma L; Wu H; Huang Y; Zou S; Li J; Zhang Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27162-27168. PubMed ID: 27599165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.