BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2621447)

  • 1. Use of a fractionated coupled transcription-translation system in the study of ribosomal resistance mechanisms in antibiotic-producing Streptomyces.
    Calcutt MJ; Cundliffe E
    J Gen Microbiol; 1989 May; 135(5):1071-81. PubMed ID: 2621447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance to pactamycin in clones of Streptomyces lividans containing DNA from pactamycin-producing Streptomyces pactum.
    Calcutt MJ; Cundliffe E
    Gene; 1990 Sep; 93(1):85-9. PubMed ID: 2227428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum.
    Ballesta JP; Cundliffe E
    J Bacteriol; 1991 Nov; 173(22):7213-8. PubMed ID: 1657884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit.
    Brodersen DE; Clemons WM; Carter AP; Morgan-Warren RJ; Wimberly BT; Ramakrishnan V
    Cell; 2000 Dec; 103(7):1143-54. PubMed ID: 11163189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal modification and resistance in antibiotic-producing organisms.
    Cundliffe E
    Biochem Soc Symp; 1987; 53():1-8. PubMed ID: 3332760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed biosynthesis of 5"-fluoropactamycin in Streptomyces pactum.
    Adams ES; Rinehart KL
    J Antibiot (Tokyo); 1994 Dec; 47(12):1456-65. PubMed ID: 7844040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis.
    Skeggs PA; Thompson J; Cundliffe E
    Mol Gen Genet; 1985; 200(3):415-21. PubMed ID: 3862930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues.
    Ito T; Roongsawang N; Shirasaka N; Lu W; Flatt PM; Kasanah N; Miranda C; Mahmud T
    Chembiochem; 2009 Sep; 10(13):2253-65. PubMed ID: 19670201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mode of action of berninamycin and mechanism of resistance in the producing organism, Streptomyces bernensis.
    Thompson J; Cundliffe E; Stark MJ
    J Gen Microbiol; 1982 Apr; 128(4):875-84. PubMed ID: 6181185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum.
    Lu W; Alanzi AR; Abugrain ME; Ito T; Mahmud T
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10589-10601. PubMed ID: 30276712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The secondary metabolite pactamycin with potential for pharmaceutical applications: biosynthesis and regulation.
    Eida AA; Mahmud T
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4337-4345. PubMed ID: 31025074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity studies of tylosin-related macrolides.
    Fish SA; Cundliffe E
    J Antibiot (Tokyo); 1996 Oct; 49(10):1044-8. PubMed ID: 8968399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of self-protection in a puromycin-producing micro-organism.
    Sugiyama M; Paik SY; Nomi R
    J Gen Microbiol; 1985 Aug; 131(8):1999-2005. PubMed ID: 4056740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in ribosome function induced by protein kinase associated with ribosomes of Streptomyces collinus producing kirromycin.
    Mikulík K; Suchan P; Bobek J
    Biochem Biophys Res Commun; 2001 Nov; 289(2):434-43. PubMed ID: 11716492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel tetrapeptide inhibitors of bacterial protein synthesis produced by a Streptomyces sp.
    Brandi L; Lazzarini A; Cavaletti L; Abbondi M; Corti E; Ciciliato I; Gastaldo L; Marazzi A; Feroggio M; Fabbretti A; Maio A; Colombo L; Donadio S; Marinelli F; Losi D; Gualerzi CO; Selva E
    Biochemistry; 2006 Mar; 45(11):3692-702. PubMed ID: 16533052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-Specific Action of Ribosomal Antibiotics.
    Vázquez-Laslop N; Mankin AS
    Annu Rev Microbiol; 2018 Sep; 72():185-207. PubMed ID: 29906204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus.
    Cundliffe E
    Nature; 1978 Apr; 272(5656):792-5. PubMed ID: 643068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic studies and genetic engineering of pactamycin analogs with improved selectivity toward malarial parasites.
    Lu W; Roongsawang N; Mahmud T
    Chem Biol; 2011 Apr; 18(4):425-31. PubMed ID: 21513878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal resistance of an istamycin producer, Streptomyces tenjimariensis, to aminoglycoside antibiotics.
    Yamamoto H; Hotta K; Okami Y; Umezawa H
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1396-401. PubMed ID: 7271807
    [No Abstract]   [Full Text] [Related]  

  • 20. Properties of the ribosomes of antibiotic producers: effects thiostrepton and micrococcin on the organisms which produce them.
    Dixon PG; Beven JE; Cundliffe E
    Antimicrob Agents Chemother; 1975 Jun; 7(6):850-5. PubMed ID: 1155929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.