These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 26214499)
21. Base excision repair initiated rolling circle amplification-based fluorescent assay for screening uracil-DNA glycosylase activity using Endo IV-assisted cleavage of AP probes. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Huang J Analyst; 2018 Aug; 143(16):3951-3958. PubMed ID: 29999513 [TBL] [Abstract][Full Text] [Related]
22. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Liu G; He W; Liu C Talanta; 2019 Apr; 195():320-326. PubMed ID: 30625549 [TBL] [Abstract][Full Text] [Related]
23. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Wang LJ; Ren M; Zhang Q; Tang B; Zhang CY Anal Chem; 2017 Apr; 89(8):4488-4494. PubMed ID: 28306242 [TBL] [Abstract][Full Text] [Related]
24. Enzyme-catalyzed assembly of gold nanoparticles for visualized screening of DNA base excision repair. Nguyen VT; Le DV; Nie C; Zhou DM; Wang YZ; Tang LJ; Jiang JH; Yu RQ Talanta; 2012 Oct; 100():303-7. PubMed ID: 23141341 [TBL] [Abstract][Full Text] [Related]
25. Coupling photoelectrochemical and electrochemical strategies in one probe electrode: Toward sensitive and reliable dual-signal bioassay for uracil-DNA glycosylase activity. Lu Y; Zhao H; Fan GC; Luo X Biosens Bioelectron; 2019 Oct; 142():111569. PubMed ID: 31404881 [TBL] [Abstract][Full Text] [Related]
26. A novel and label-free biosensors for uracil-DNA glycosylase activity based on the electrochemical oxidation of guanine bases at the graphene modified electrode. Jiao F; Qian P; Qin Y; Xia Y; Deng C; Nie Z Talanta; 2016 Jan; 147():98-102. PubMed ID: 26592582 [TBL] [Abstract][Full Text] [Related]
27. A DNA machine-based fluorescence amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Wu Y; Wang L; Zhu J; Jiang W Biosens Bioelectron; 2015 Jun; 68():654-659. PubMed ID: 25660509 [TBL] [Abstract][Full Text] [Related]
28. A rapid reaction analysis of uracil DNA glycosylase indicates an active mechanism of base flipping. Bellamy SR; Krusong K; Baldwin GS Nucleic Acids Res; 2007; 35(5):1478-87. PubMed ID: 17284454 [TBL] [Abstract][Full Text] [Related]
29. 2-aminopurine as a probe for quadruplex loop structures. Gray RD; Petraccone L; Buscaglia R; Chaires JB Methods Mol Biol; 2010; 608():121-36. PubMed ID: 20012419 [TBL] [Abstract][Full Text] [Related]
30. Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Chen M; Li W; Ma C; Wu K; He H; Wang K Mikrochim Acta; 2019 Jan; 186(2):110. PubMed ID: 30637581 [TBL] [Abstract][Full Text] [Related]
31. A highly sensitive electrochemical platform for the assay of uracil-DNA glycosylase activity combined with enzymatic amplification. Zhang H; Zhang L; Jiang J; Yu R Anal Sci; 2013; 29(2):193-8. PubMed ID: 23400284 [TBL] [Abstract][Full Text] [Related]
32. Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases. Li CC; Zhang Y; Tang B; Zhang CY Chem Commun (Camb); 2018 Jun; 54(46):5839-5842. PubMed ID: 29707704 [TBL] [Abstract][Full Text] [Related]
33. A label-free and highly sensitive strategy for uracil-DNA glycosylase activity detection based on stem-loop primer-mediated exponential amplification (SPEA). Du W; Li J; Xiao F; Yu R; Jiang J Anal Chim Acta; 2017 Oct; 991():127-132. PubMed ID: 29031294 [TBL] [Abstract][Full Text] [Related]
34. A tri-functional probe mediated exponential amplification strategy for highly sensitive detection of Dnmt1 and UDG activities at single-cell level. Fan L; Peng Y; Ning B; Wei H; Gao Z; Bai J; Guo L Anal Chim Acta; 2020 Mar; 1103():164-173. PubMed ID: 32081181 [TBL] [Abstract][Full Text] [Related]
35. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Kong DM; Ma YE; Guo JH; Yang W; Shen HX Anal Chem; 2009 Apr; 81(7):2678-84. PubMed ID: 19271760 [TBL] [Abstract][Full Text] [Related]
36. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores. Nikiforov TT; Roman S Anal Biochem; 2015 May; 477():69-77. PubMed ID: 25728944 [TBL] [Abstract][Full Text] [Related]
37. Uracil removal-inhibited ligase reaction in combination with catalytic hairpin assembly for the sensitive and specific detection of uracil-DNA glycosylase activity. Xu X; Wang L; Wu Y; Jiang W Analyst; 2017 Dec; 142(24):4655-4660. PubMed ID: 29171849 [TBL] [Abstract][Full Text] [Related]
38. Quadruplex formation as a molecular switch to turn on intrinsically fluorescent nucleotide analogs. Johnson J; Okyere R; Joseph A; Musier-Forsyth K; Kankia B Nucleic Acids Res; 2013 Jan; 41(1):220-8. PubMed ID: 23093597 [TBL] [Abstract][Full Text] [Related]
39. Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling. Xue Q; Zhang Y; Xu S; Li H; Wang L; Li R; Zhang Y; Yue Q; Gu X; Zhang S; Liu J; Wang H Analyst; 2015 Nov; 140(22):7637-44. PubMed ID: 26421322 [TBL] [Abstract][Full Text] [Related]
40. Integration of magnetic separation and real-time ligation chain reaction for detection of uracil-DNA glycosylase. Liu J; Zhang J; Chen M; Qiu D; Lv X; Jiang Q; Cheng Y Anal Bioanal Chem; 2021 Jan; 413(1):255-261. PubMed ID: 33079213 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]