These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26214500)

  • 21. On the speed of pop-out in feature search.
    Turatto M; Valsecchi M; Seiffert AE; Caramazza A
    J Exp Psychol Hum Percept Perform; 2010 Oct; 36(5):1145-52. PubMed ID: 20718563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dimension-based working memory-driven capture of visual selection.
    Pan Y; Xu B; Soto D
    Q J Exp Psychol (Hove); 2009 Jun; 62(6):1123-31. PubMed ID: 19142832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of lightness, hue and saturation in feature-based visual attention.
    Stuart GW; Barsdell WN; Day RH
    Vision Res; 2014 Mar; 96():25-32. PubMed ID: 24384403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redundancy gains in pop-out visual search are determined by top-down task set: behavioral and electrophysiological evidence.
    Grubert A; Krummenacher J; Eimer M
    J Vis; 2011 Dec; 11(14):. PubMed ID: 22159631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attentional set protects visual marking from visual transients.
    Osugi T; Kawahara JI
    Q J Exp Psychol (Hove); 2013; 66(1):69-90. PubMed ID: 22834464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Not all features are created equal: Processing asymmetries between location and object features.
    Chen Z
    Vision Res; 2009 May; 49(11):1481-91. PubMed ID: 19303423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing multidimensional objects under different perceptual loads: the priority of bottom-up perceptual saliency.
    Wei P; Zhou X
    Brain Res; 2006 Oct; 1114(1):113-24. PubMed ID: 16935270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The time-course of pop-out search.
    Olds ES; Cowan WB; Jolicoeur P
    Vision Res; 2000; 40(8):891-912. PubMed ID: 10720661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of synesthesia on eye movements: no synesthetic pop-out in an oculomotor target selection task.
    Nijboer TC; Satris G; Van der Stigchel S
    Conscious Cogn; 2011 Dec; 20(4):1193-200. PubMed ID: 21531581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saliency maps for finding changes in visual scenes?
    Liesefeld HR; Liesefeld AM; Müller HJ; Rangelov D
    Atten Percept Psychophys; 2017 Oct; 79(7):2190-2201. PubMed ID: 28718177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In visual search, guidance by surface type is different than classic guidance.
    Wolfe JM; Reijnen E; Van Wert MJ; Kuzmova Y
    Vision Res; 2009 Mar; 49(7):765-73. PubMed ID: 19236891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of attention in binding visual features in working memory: evidence from cognitive ageing.
    Brown LA; Brockmole JR
    Q J Exp Psychol (Hove); 2010 Oct; 63(10):2067-79. PubMed ID: 20446186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attention capture is temporally stable: Evidence from mixed-model correlations.
    Weichselbaum H; Huber-Huber C; Ansorge U
    Cognition; 2018 Nov; 180():206-224. PubMed ID: 30081374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature specificity in attentional capture by size and color.
    Harris AM; Remington RW; Becker SI
    J Vis; 2013 May; 13(3):. PubMed ID: 23650630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relative contributions of task-relevant and task-irrelevant dimensions in priming of pop-out.
    Michal AL; Lleras A; Beck DM
    J Vis; 2014 Oct; 14(12):. PubMed ID: 25311302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying bottom-up and top-down components of attentional weight by experimental analysis and computational modeling.
    Nordfang M; Dyrholm M; Bundesen C
    J Exp Psychol Gen; 2013 May; 142(2):510-35. PubMed ID: 22889161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex.
    Ogawa T; Komatsu H
    J Neurophysiol; 2009 Feb; 101(2):721-36. PubMed ID: 19073809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aging and comparative search for feature differences.
    Gottlob LR
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2006; 13(3-4):435-57. PubMed ID: 16887782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-trial effects in visual pop-out search: Factorial comparison of Bayesian updating models.
    Allenmark F; Müller HJ; Shi Z
    PLoS Comput Biol; 2018 Jul; 14(7):e1006328. PubMed ID: 30059500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. At first sight: a high-level pop out effect for faces.
    Hershler O; Hochstein S
    Vision Res; 2005 Jun; 45(13):1707-24. PubMed ID: 15792845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.