These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 26214691)
1. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. Dou J; Tien Bui D; Yunus AP; Jia K; Song X; Revhaug I; Xia H; Zhu Z PLoS One; 2015; 10(7):e0133262. PubMed ID: 26214691 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
3. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology. Saha A; Tripathi L; Villuri VGK; Bhardwaj A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087 [TBL] [Abstract][Full Text] [Related]
4. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126 [TBL] [Abstract][Full Text] [Related]
6. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Dou J; Yunus AP; Tien Bui D; Merghadi A; Sahana M; Zhu Z; Chen CW; Khosravi K; Yang Y; Pham BT Sci Total Environ; 2019 Apr; 662():332-346. PubMed ID: 30690368 [TBL] [Abstract][Full Text] [Related]
7. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356 [TBL] [Abstract][Full Text] [Related]
8. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941 [TBL] [Abstract][Full Text] [Related]
9. Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures Municipality. Guillard C; Zezere J Environ Manage; 2012 Oct; 50(4):721-35. PubMed ID: 22864551 [TBL] [Abstract][Full Text] [Related]
10. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
11. Landslide susceptibility assessment using the Weight of Evidence method: A case study in Xunyang area, China. Cao Y; Wei X; Fan W; Nan Y; Xiong W; Zhang S PLoS One; 2021; 16(1):e0245668. PubMed ID: 33493200 [TBL] [Abstract][Full Text] [Related]
12. GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India. Das J; Saha P; Mitra R; Alam A; Kamruzzaman M Heliyon; 2023 May; 9(5):e16186. PubMed ID: 37234665 [TBL] [Abstract][Full Text] [Related]
13. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Ozioko OH; Igwe O Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278 [TBL] [Abstract][Full Text] [Related]
14. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Chen W; Peng J; Hong H; Shahabi H; Pradhan B; Liu J; Zhu AX; Pei X; Duan Z Sci Total Environ; 2018 Jun; 626():1121-1135. PubMed ID: 29898519 [TBL] [Abstract][Full Text] [Related]
15. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda. Nsengiyumva JB; Luo G; Nahayo L; Huang X; Cai P Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29385096 [TBL] [Abstract][Full Text] [Related]
16. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Lee S Environ Manage; 2004 Aug; 34(2):223-32. PubMed ID: 15559946 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Assessment of Landslide Susceptibility Comparing Statistical Index, Index of Entropy, and Weights of Evidence in the Shangnan Area, China. Liu J; Duan Z Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266593 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Juliev M; Mergili M; Mondal I; Nurtaev B; Pulatov A; Hübl J Sci Total Environ; 2019 Feb; 653():801-814. PubMed ID: 30759606 [TBL] [Abstract][Full Text] [Related]
19. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Karsli F; Atasoy M; Yalcin A; Reis S; Demir O; Gokceoglu C Environ Monit Assess; 2009 Sep; 156(1-4):241-55. PubMed ID: 18780152 [TBL] [Abstract][Full Text] [Related]
20. Integrating stratified best-worst method and GIS for landslide susceptibility assessment: a case study in Erzurum province (Turkey). Konurhan Z; Yucesan M; Gul M Environ Sci Pollut Res Int; 2023 Nov; 30(53):113978-114000. PubMed ID: 37858024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]