These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
611 related articles for article (PubMed ID: 26214799)
1. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Ma M; Djanashvili K; Smith WA Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799 [TBL] [Abstract][Full Text] [Related]
2. Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. Ma M; Djanashvili K; Smith WA Angew Chem Int Ed Engl; 2016 Jun; 55(23):6680-4. PubMed ID: 27098996 [TBL] [Abstract][Full Text] [Related]
3. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235 [TBL] [Abstract][Full Text] [Related]
4. Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction. Raciti D; Livi KJ; Wang C Nano Lett; 2015 Oct; 15(10):6829-35. PubMed ID: 26352048 [TBL] [Abstract][Full Text] [Related]
5. Structure-Sensitive CO Li Y; Cui F; Ross MB; Kim D; Sun Y; Yang P Nano Lett; 2017 Feb; 17(2):1312-1317. PubMed ID: 28094953 [TBL] [Abstract][Full Text] [Related]
6. Promoting Ethylene Selectivity from CO Yang HJ; Yang H; Hong YH; Zhang PY; Wang T; Chen LN; Zhang FY; Wu QH; Tian N; Zhou ZY; Sun SG ChemSusChem; 2018 Mar; 11(5):881-887. PubMed ID: 29446547 [TBL] [Abstract][Full Text] [Related]
7. Copper⁻Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Wang Y; Niu C; Zhu Y Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30704109 [TBL] [Abstract][Full Text] [Related]
8. Copper as a robust and transparent electrocatalyst for water oxidation. Du J; Chen Z; Ye S; Wiley BJ; Meyer TJ Angew Chem Int Ed Engl; 2015 Feb; 54(7):2073-8. PubMed ID: 25581365 [TBL] [Abstract][Full Text] [Related]
9. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution. Hou CC; Fu WF; Chen Y ChemSusChem; 2016 Aug; 9(16):2069-73. PubMed ID: 27440473 [TBL] [Abstract][Full Text] [Related]
10. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled. Huang J; Zhu Y; Yang X; Chen W; Zhou Y; Li C Nanoscale; 2015 Jan; 7(2):559-69. PubMed ID: 25415769 [TBL] [Abstract][Full Text] [Related]
11. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. Chen Y; Li CW; Kanan MW J Am Chem Soc; 2012 Dec; 134(49):19969-72. PubMed ID: 23171134 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres. Li D; Huang L; Liu T; Liu J; Zhen L; Wu J; Feng Y Chemosphere; 2019 Dec; 237():124527. PubMed ID: 31549649 [TBL] [Abstract][Full Text] [Related]
13. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. Huang J; Zhu Y; Zhong H; Yang X; Li C ACS Appl Mater Interfaces; 2014 May; 6(10):7055-62. PubMed ID: 24831824 [TBL] [Abstract][Full Text] [Related]
14. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol. Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877 [TBL] [Abstract][Full Text] [Related]
15. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4. Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880 [TBL] [Abstract][Full Text] [Related]
16. Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate. Huang Y; Deng Y; Handoko AD; Goh GKL; Yeo BS ChemSusChem; 2018 Jan; 11(1):320-326. PubMed ID: 28881436 [TBL] [Abstract][Full Text] [Related]
17. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation. Shi W; Chopra N ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284 [TBL] [Abstract][Full Text] [Related]
18. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Zhuang Z; Su X; Yuan H; Sun Q; Xiao D; Choi MM Analyst; 2008 Jan; 133(1):126-32. PubMed ID: 18087623 [TBL] [Abstract][Full Text] [Related]
19. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes. Zhao H; Lin Z; Marder TB J Am Chem Soc; 2006 Dec; 128(49):15637-43. PubMed ID: 17147372 [TBL] [Abstract][Full Text] [Related]
20. Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing. Li C; Kurniawan M; Sun D; Tabata H; Delaunay JJ Nanotechnology; 2015 Jan; 26(1):015503. PubMed ID: 25493443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]