These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26214802)
1. Improved Variable Selection Algorithm Using a LASSO-Type Penalty, with an Application to Assessing Hepatitis B Infection Relevant Factors in Community Residents. Guo P; Zeng F; Hu X; Zhang D; Zhu S; Deng Y; Hao Y PLoS One; 2015; 10(7):e0134151. PubMed ID: 26214802 [TBL] [Abstract][Full Text] [Related]
2. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO. Zhu XW; Xin YJ; Ge HL J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224 [TBL] [Abstract][Full Text] [Related]
3. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany. Wang Z; Ma S; Wang CY Biom J; 2015 Sep; 57(5):867-84. PubMed ID: 26059498 [TBL] [Abstract][Full Text] [Related]
4. Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection. Mayr A; Hofner B; Schmid M BMC Bioinformatics; 2016 Jul; 17():288. PubMed ID: 27444890 [TBL] [Abstract][Full Text] [Related]
5. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238 [TBL] [Abstract][Full Text] [Related]
6. Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models. Belhechmi S; Bin R; Rotolo F; Michiels S BMC Bioinformatics; 2020 Jul; 21(1):277. PubMed ID: 32615919 [TBL] [Abstract][Full Text] [Related]
7. Ridle for sparse regression with mandatory covariates with application to the genetic assessment of histologic grades of breast cancer. Zhai J; Hsu CH; Daye ZJ BMC Med Res Methodol; 2017 Jan; 17(1):12. PubMed ID: 28122498 [TBL] [Abstract][Full Text] [Related]
8. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
9. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application. Vasquez MM; Hu C; Roe DJ; Chen Z; Halonen M; Guerra S BMC Med Res Methodol; 2016 Nov; 16(1):154. PubMed ID: 27842498 [TBL] [Abstract][Full Text] [Related]
10. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models. Ternès N; Rotolo F; Michiels S Stat Med; 2016 Jul; 35(15):2561-73. PubMed ID: 26970107 [TBL] [Abstract][Full Text] [Related]
11. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso. Kamkar I; Gupta SK; Phung D; Venkatesh S J Biomed Inform; 2015 Feb; 53():277-90. PubMed ID: 25500636 [TBL] [Abstract][Full Text] [Related]
12. Variable selection for proportional odds model. Lu W; Zhang HH Stat Med; 2007 Sep; 26(20):3771-81. PubMed ID: 17266170 [TBL] [Abstract][Full Text] [Related]
13. Comparison of subset selection methods in linear regression in the context of health-related quality of life and substance abuse in Russia. Morozova O; Levina O; Uusküla A; Heimer R BMC Med Res Methodol; 2015 Aug; 15():71. PubMed ID: 26319135 [TBL] [Abstract][Full Text] [Related]
14. Graphical modeling of binary data using the LASSO: a simulation study. Strobl R; Grill E; Mansmann U BMC Med Res Methodol; 2012 Feb; 12():16. PubMed ID: 22353192 [TBL] [Abstract][Full Text] [Related]
15. A permutation approach for selecting the penalty parameter in penalized model selection. Sabourin JA; Valdar W; Nobel AB Biometrics; 2015 Dec; 71(4):1185-94. PubMed ID: 26243050 [TBL] [Abstract][Full Text] [Related]
16. Variable selection for multiply-imputed data with application to dioxin exposure study. Chen Q; Wang S Stat Med; 2013 Sep; 32(21):3646-59. PubMed ID: 23526243 [TBL] [Abstract][Full Text] [Related]
17. An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis. He K; Wang Y; Zhou X; Xu H; Huang C Lifetime Data Anal; 2019 Jul; 25(3):569-585. PubMed ID: 30478713 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Bondell HD; Reich BJ Biometrics; 2008 Mar; 64(1):115-23. PubMed ID: 17608783 [TBL] [Abstract][Full Text] [Related]
19. An empirical approach to model selection through validation for censored survival data. Choi I; Wells BJ; Yu C; Kattan MW J Biomed Inform; 2011 Aug; 44(4):595-606. PubMed ID: 21335102 [TBL] [Abstract][Full Text] [Related]