These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 26215460)
1. Copper Uptake Efficiency and Its Distribution Within Bioenergy Grass Giant Reed. Elhawat N; Alshaal T; Domokos-Szabolcsy É; El-Ramady H; Antal G; Márton L; Czakó M; Balogh P; Fári M Bull Environ Contam Toxicol; 2015 Oct; 95(4):452-8. PubMed ID: 26215460 [TBL] [Abstract][Full Text] [Related]
2. Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Elhawat N; Alshaal T; Domokos-Szabolcsy É; El-Ramady H; Márton L; Czakó M; Kátai J; Balogh P; Sztrik A; Molnár M; Popp J; Fári MG Environ Sci Pollut Res Int; 2014 Jun; 21(12):7773-80. PubMed ID: 24638838 [TBL] [Abstract][Full Text] [Related]
3. Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential. Domokos-Szabolcsy É; Fári M; Márton L; Czakó M; Veres S; Elhawat N; Antal G; El-Ramady H; Zsíros O; Garab G; Alshaal T Environ Sci Pollut Res Int; 2018 Nov; 25(31):31368-31380. PubMed ID: 30196460 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop. Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional, metabolic and DNA methylation changes underpinning the response of Arundo donax ecotypes to NaCl excess. Docimo T; De Stefano R; De Palma M; Cappetta E; Villano C; Aversano R; Tucci M Planta; 2019 Dec; 251(1):34. PubMed ID: 31848729 [TBL] [Abstract][Full Text] [Related]
6. Effect of copper toxicity on root morphology, ultrastructure, and copper accumulation in Moso bamboo (Phyllostachys pubescens). Chen J; Peng D; Shafi M; Li S; Wu J; Ye Z; Yan W; Lu K; Liu D Z Naturforsch C J Biosci; 2014; 69(9-10):399-406. PubMed ID: 25711041 [TBL] [Abstract][Full Text] [Related]
7. Toxic effects of Cu(2+) on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Kopittke PM; Asher CJ; Blamey FP; Menzies NW Sci Total Environ; 2009 Aug; 407(16):4616-21. PubMed ID: 19467695 [TBL] [Abstract][Full Text] [Related]
8. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Goswami S; Das S Ecotoxicol Environ Saf; 2016 Apr; 126():211-218. PubMed ID: 26773830 [TBL] [Abstract][Full Text] [Related]
9. Characterization of differentially expressed genes to Cu stress in Brassica nigra by Arabidopsis genome arrays. Cevher-Keskin B; Yıldızhan Y; Yüksel B; Dalyan E; Memon AR Environ Sci Pollut Res Int; 2019 Jan; 26(1):299-311. PubMed ID: 30397750 [TBL] [Abstract][Full Text] [Related]
10. NO de Souza Junior JC; Nogueirol RC; Monteiro FA Environ Sci Pollut Res Int; 2018 May; 25(14):14083-14096. PubMed ID: 29520547 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal tolerance and accumulation of Triarrhena sacchariflora, a large amphibious ornamental grass. Tian RN; Yu S; Wang SG; Zhang Y; Tang JY; Liu YL; Nie YH Water Sci Technol; 2013; 68(8):1795-800. PubMed ID: 24185062 [TBL] [Abstract][Full Text] [Related]
12. Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture. Weng G; Wu L; Wang Z; Luo Y; Christie P Environ Int; 2005 Aug; 31(6):880-4. PubMed ID: 16005517 [TBL] [Abstract][Full Text] [Related]
13. Silicon alleviates antimony phytotoxicity in giant reed (Arundo donax L.). Shetty R; Vidya CS; Weidinger M; Vaculík M Planta; 2021 Oct; 254(5):100. PubMed ID: 34665350 [TBL] [Abstract][Full Text] [Related]
14. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Ferrarini A; Fracasso A; Spini G; Fornasier F; Taskin E; Fontanella MC; Beone GM; Amaducci S; Puglisi E Front Microbiol; 2021; 12():645893. PubMed ID: 33959108 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Mirza N; Mahmood Q; Pervez A; Ahmad R; Farooq R; Shah MM; Azim MR Bioresour Technol; 2010 Aug; 101(15):5815-9. PubMed ID: 20363125 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional response of giant reed (Arundo donax L.) low ecotype to long-term salt stress by unigene-based RNAseq. Sicilia A; Santoro DF; Testa G; Cosentino SL; Lo Piero AR Phytochemistry; 2020 Sep; 177():112436. PubMed ID: 32563719 [TBL] [Abstract][Full Text] [Related]
17. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
18. Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation. Oliveira T; Mucha AP; Reis I; Rodrigues P; Gomes CR; Almeida CM Mar Pollut Bull; 2014 Nov; 88(1-2):231-8. PubMed ID: 25240741 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant response of Phragmites australis to Cu and Cd contamination. Rocha AC; Almeida CM; Basto MC; Vasconcelos MT Ecotoxicol Environ Saf; 2014 Nov; 109():152-60. PubMed ID: 25193786 [TBL] [Abstract][Full Text] [Related]
20. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans. Alirzayeva E; Neumann G; Horst W; Allahverdiyeva Y; Specht A; Alizade V Environ Pollut; 2017 Jan; 220(Pt B):1024-1035. PubMed ID: 27890587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]