These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26215460)

  • 41. Long-term Cu stabilization and biomass yields of Giant reed and poplar after adding a biochar, alone or with iron grit, into a contaminated soil from a wood preservation site.
    Oustriere N; Marchand L; Lottier N; Motelica M; Mench M
    Sci Total Environ; 2017 Feb; 579():620-627. PubMed ID: 27887831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of silicon and copper on bamboo grown hydroponically.
    Collin B; Doelsch E; Keller C; Panfili F; Meunier JD
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6482-95. PubMed ID: 23608981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr.
    Xiong ZT; Liu C; Geng B
    Ecotoxicol Environ Saf; 2006 Jul; 64(3):273-80. PubMed ID: 16616956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel.
    Wiangkham N; Prapagdee B
    Chemosphere; 2018 Jun; 201():511-518. PubMed ID: 29529578
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copper phytotoxicity in native and agronomical plant species.
    Lamb DT; Naidu R; Ming H; Megharaj M
    Ecotoxicol Environ Saf; 2012 Nov; 85():23-9. PubMed ID: 22995781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper toxicity thresholds for important restoration grass species of the Western United States.
    Paschke MW; Redente EF
    Environ Toxicol Chem; 2002 Dec; 21(12):2692-7. PubMed ID: 12463566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge.
    Antonkiewicz J; Kołodziej B; Bielińska EJ
    Environ Sci Pollut Res Int; 2016 May; 23(10):9505-17. PubMed ID: 26841773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.
    Andrade SA; Silveira AP; Mazzafera P
    Sci Total Environ; 2010 Oct; 408(22):5381-91. PubMed ID: 20716461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of the functional traits of common reed (Phragmites australis) in northern China: aquatic vs. terrestrial ecotypes.
    Li L; Han W; Thevs N; Jia X; Ji C; Jin D; He P; Schmitt AO; Cirella GT; Zerbe S
    PLoS One; 2014; 9(2):e89063. PubMed ID: 24586505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems?
    Brunet J; Repellin A; Varrault G; Terryn N; Zuily-Fodil Y
    C R Biol; 2008 Nov; 331(11):859-64. PubMed ID: 18940701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper-induced alteration in sucrose partitioning and its relationship to the root growth of two Elsholtzia haichowensis Sun populations.
    Li MJ; Xiong ZT; Liu H; Kuo YM; Tong L
    Int J Phytoremediation; 2016 Oct; 18(10):966-76. PubMed ID: 27153457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene expression and biochemical response of giant reed under Ni and Cu stress.
    Shaheen S; Ahmad R; Mahmood Q; Pervez A; Maroof Shah M; Hafeez F
    Int J Phytoremediation; 2019; 21(14):1474-1485. PubMed ID: 31264465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of harvest date on Arundo donax L. (giant reed) composition, ensilage performance, and enzymatic digestibility.
    Liu S; Ge X; Liu Z; Li Y
    Bioresour Technol; 2016 Apr; 205():97-103. PubMed ID: 26820922
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L.
    Płociniczak T; Kukla M; Wątroba R; Piotrowska-Seget Z
    Chemosphere; 2013 May; 91(9):1332-7. PubMed ID: 23561856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.
    Costa MB; Tavares FV; Martinez CB; Colares IG; Martins CMG
    Ecotoxicol Environ Saf; 2018 Jul; 155():117-124. PubMed ID: 29510306
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Responses of three grass species to creosote during phytoremediation.
    Huang XD; El-Alawi Y; Penrose DM; Glick BR; Greenberg BM
    Environ Pollut; 2004 Aug; 130(3):453-63. PubMed ID: 15182976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc.
    Fuentes D; Disante KB; Valdecantos A; Cortina J; Vallejo VR
    Chemosphere; 2007 Jan; 66(3):412-20. PubMed ID: 16870229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.
    Keller C; Rizwan M; Davidian JC; Pokrovsky OS; Bovet N; Chaurand P; Meunier JD
    Planta; 2015 Apr; 241(4):847-60. PubMed ID: 25515193
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes.
    Murtaza G; Javed W; Hussain A; Qadir M; Aslam M
    Int J Phytoremediation; 2017 Feb; 19(2):199-206. PubMed ID: 27419530
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments.
    Ahrar M; Doneva D; Tattini M; Brunetti C; Gori A; Rodeghiero M; Wohlfahrt G; Biasioli F; Varotto C; Loreto F; Velikova V
    J Exp Bot; 2017 Apr; 68(9):2439-2451. PubMed ID: 28449129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.