BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26215542)

  • 1. Bioaccessibility and Health Risk Assessment of Cu, Cd, and Zn in "Colored" Oysters.
    He M; Ke CH; Tian L; Li HB
    Arch Environ Contam Toxicol; 2016 Apr; 70(3):595-606. PubMed ID: 26215542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration.
    Gao S; Wang WX
    Ecotoxicol Environ Saf; 2014 Dec; 110():261-8. PubMed ID: 25265028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of Cu and Zn in Two Colored Oyster Species Determined by X-ray Absorption Spectroscopy.
    Tan QG; Wang Y; Wang WX
    Environ Sci Technol; 2015 Jun; 49(11):6919-25. PubMed ID: 25936404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitated bioaccumulation of cadmium and copper in the oyster Crassostrea hongkongensis solely exposed to zinc.
    Liu F; Wang WX
    Environ Sci Technol; 2013 Feb; 47(3):1670-7. PubMed ID: 23281839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oyster arsenic, cadmium, copper, mercury, lead and zinc levels in the northern South China Sea: long-term spatiotemporal distributions, combined effects, and risk assessment to human health.
    Wang L; Wang X; Chen H; Wang Z; Jia X
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12706-12719. PubMed ID: 34993803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.
    Luo L; Ke C; Guo X; Shi B; Huang M
    Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation of trace metals and speciation of copper and zinc in Pacific oysters (Crassostrea gigas) using XANES/EXAFS spectroscopies.
    Kunene SC; Lin KS; Mdlovu NV; Shih WC
    Chemosphere; 2021 Feb; 265():129067. PubMed ID: 33246704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the variable metal concentrations in estuarine oysters Crassostrea hongkongensis: A biokinetic analysis.
    Yang S; Li Y; Chen F; Chen S; Luo X; Duan W; Liao Y; Jiang H; Pan K
    Mar Environ Res; 2024 Apr; 196():106393. PubMed ID: 38367293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper and zinc contamination in oysters: subcellular distribution and detoxification.
    Wang WX; Yang Y; Guo X; He M; Guo F; Ke C
    Environ Toxicol Chem; 2011 Aug; 30(8):1767-74. PubMed ID: 21560147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace element occurrence in the Pacific oyster Crassostrea gigas from coastal marine ecosystems in Italy.
    Burioli EAV; Squadrone S; Stella C; Foglini C; Abete MC; Prearo M
    Chemosphere; 2017 Nov; 187():248-260. PubMed ID: 28850909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depuration of metals by the green-colored oyster Crassostrea sikamea.
    Wang L; Wang WX
    Environ Toxicol Chem; 2014 Oct; 33(10):2379-85. PubMed ID: 25053576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.
    Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP
    Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy Metal Contamination in the Cultivated Oyster Crassostrea rivularis and Associated Health Risks from a Typical Mariculture Zone in the South China Sea.
    Luo H; Wang Q; Nie X; Ren H; Shen Z; Xie X; Yang Y
    Bull Environ Contam Toxicol; 2018 Jul; 101(1):33-41. PubMed ID: 29855659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial variation and subcellular binding of metals in oysters from a large estuary in China.
    Yu XJ; Pan K; Liu F; Yan Y; Wang WX
    Mar Pollut Bull; 2013 May; 70(1-2):274-80. PubMed ID: 23537691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).
    Páez-Osuna F; Osuna-Martínez CC
    Arch Environ Contam Toxicol; 2015 Feb; 68(2):305-16. PubMed ID: 25556031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing the biokinetic processes of oysters to counteract the metal challenges: physiological acclimation.
    Pan K; Wang WX
    Environ Sci Technol; 2012 Oct; 46(19):10765-71. PubMed ID: 22913643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary.
    Liu X; Wang WX
    Sci Total Environ; 2016 Feb; 544():281-90. PubMed ID: 26657374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metals in sediments, mussels and oysters from Trinidad and Venezuela.
    Astudillol LR; Yen IC; Bekele I
    Rev Biol Trop; 2005 May; 53 Suppl 1():41-53. PubMed ID: 17465143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability of purified subcellular metals to a marine fish.
    Guo F; Yao J; Wang WX
    Environ Toxicol Chem; 2013 Sep; 32(9):2109-16. PubMed ID: 23703902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.