BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26215661)

  • 1. Centrifugal microfluidic platform for single-cell level cardiomyocyte-based drug profiling and screening.
    Espulgar W; Aoki W; Ikeuchi T; Mita D; Saito M; Lee JK; Tamiya E
    Lab Chip; 2015 Sep; 15(17):3572-80. PubMed ID: 26215661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device.
    Kim MJ; Lee SC; Pal S; Han E; Song JM
    Lab Chip; 2011 Jan; 11(1):104-14. PubMed ID: 21060932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrifugation-Assisted Single-Cell Trapping in a Truncated Cone-Shaped Microwell Array Chip for the Real-Time Observation of Cellular Apoptosis.
    Huang L; Chen Y; Chen Y; Wu H
    Anal Chem; 2015 Dec; 87(24):12169-76. PubMed ID: 26579559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro pumping with cardiomyocyte-polymer hybrid.
    Park J; Kim IC; Baek J; Cha M; Kim J; Park S; Lee J; Kim B
    Lab Chip; 2007 Oct; 7(10):1367-70. PubMed ID: 17896023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cardiomyocyte-based biosensor for antiarrhythmic drug evaluation by simultaneously monitoring cell growth and beating.
    Wang T; Hu N; Cao J; Wu J; Su K; Wang P
    Biosens Bioelectron; 2013 Nov; 49():9-13. PubMed ID: 23708811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications.
    Peters MF; Scott CW; Ochalski R; Dragan YP
    Assay Drug Dev Technol; 2012 Dec; 10(6):525-32. PubMed ID: 22574652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing.
    Maddah M; Heidmann JD; Mandegar MA; Walker CD; Bolouki S; Conklin BR; Loewke KE
    Stem Cell Reports; 2015 Apr; 4(4):621-31. PubMed ID: 25801505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical microscopy imaging for the diagnosis of the pharmacological reaction of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs).
    Ikeuchi T; Espulgar W; Shimizu E; Saito M; Lee JK; Dou X; Yamaguchi Y; Tamiya E
    Analyst; 2015 Oct; 140(19):6500-7. PubMed ID: 26309911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic selection and retention of a single cardiac myocyte, on-chip dye loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium.
    Li X; Li PC
    Anal Chem; 2005 Jul; 77(14):4315-22. PubMed ID: 16013841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues.
    Marsano A; Conficconi C; Lemme M; Occhetta P; Gaudiello E; Votta E; Cerino G; Redaelli A; Rasponi M
    Lab Chip; 2016 Feb; 16(3):599-610. PubMed ID: 26758922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A planar dielectrophoresis-based chip for high-throughput cell pairing.
    Wu C; Chen R; Liu Y; Yu Z; Jiang Y; Cheng X
    Lab Chip; 2017 Nov; 17(23):4008-4014. PubMed ID: 29115319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.