BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26215919)

  • 1. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities.
    Farley MM; Swulius MT; Waxham MN
    Neuroscience; 2015 Sep; 304():286-301. PubMed ID: 26215919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities.
    Carlin RK; Grab DJ; Cohen RS; Siekevitz P
    J Cell Biol; 1980 Sep; 86(3):831-45. PubMed ID: 7410481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum.
    Yun-Hong Y; Chih-Fan C; Chia-Wei C; Yen-Chung C
    Mol Cell Proteomics; 2011 Oct; 10(10):M110.007138. PubMed ID: 21715321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and composition of the postsynaptic density during development.
    Swulius MT; Kubota Y; Forest A; Waxham MN
    J Comp Neurol; 2010 Oct; 518(20):4243-60. PubMed ID: 20878786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of CaMKII at postsynaptic densities by electron microscopy tomography.
    Fera A; Dosemeci A; Sousa AA; Yang C; Leapman RD; Reese TS
    J Comp Neurol; 2012 Dec; 520(18):4218-25. PubMed ID: 22627922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Na+-independent GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities isolated from canine cerebral cortex and cerebellum.
    Carlin RK; Siekevitz P
    J Neurochem; 1984 Oct; 43(4):1011-7. PubMed ID: 6088689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.
    Liu Q; Yao WD; Suzuki T
    J Neurogenet; 2013 Jun; 27(1-2):43-58. PubMed ID: 23527882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The changes of signal transduction pathways in hippocampal regions and postsynaptic densities after chronic cerebral hypoperfusion in rats.
    Hai J; Yu F; Lin Q; Su SH
    Brain Res; 2012 Jan; 1429():9-17. PubMed ID: 22063366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain.
    Tao-Cheng JH; Gallant PE; Brightman MW; Dosemeci A; Reese TS
    J Comp Neurol; 2007 Apr; 501(5):731-40. PubMed ID: 17299754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent redistribution of CaMKII in the postsynaptic compartment of hippocampal neurons.
    Tao-Cheng JH
    Mol Brain; 2020 Apr; 13(1):53. PubMed ID: 32238193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD.
    Petersen JD; Chen X; Vinade L; Dosemeci A; Lisman JE; Reese TS
    J Neurosci; 2003 Dec; 23(35):11270-8. PubMed ID: 14657186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major differences in the concanavalin A binding glycoproteins of postsynaptic densities from rat forebrain and cerebellum.
    Gordon-Weeks PR; Harding S
    Brain Res; 1983 Oct; 277(2):380-5. PubMed ID: 6640303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of densin in neurons.
    Dosemeci A; Tao-Cheng JH; Loo H; Reese TS
    PLoS One; 2018; 13(10):e0205859. PubMed ID: 30325965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron cryotomography of postsynaptic densities during development reveals a mechanism of assembly.
    Swulius MT; Farley MM; Bryant MA; Waxham MN
    Neuroscience; 2012 Jun; 212():19-29. PubMed ID: 22516021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat.
    Amegandjin CA; Jammow W; Laforest S; Riad M; Baharnoori M; Badeaux F; DesGroseillers L; Murai KK; Pasquale EB; Drolet G; Doucet G
    J Comp Neurol; 2016 Aug; 524(12):2462-78. PubMed ID: 26780036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein components of post-synaptic density lattice, a backbone structure for type I excitatory synapses.
    Suzuki T; Kametani K; Guo W; Li W
    J Neurochem; 2018 Feb; 144(4):390-407. PubMed ID: 29134655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation.
    Tao-Cheng JH; Thein S; Yang Y; Reese TS; Gallant PE
    Neuroscience; 2014 Apr; 266():80-90. PubMed ID: 24530450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CaMKII-mediated displacement of AIDA-1 out of the postsynaptic density core.
    Dosemeci A; Toy D; Burch A; Bayer KU; Tao-Cheng JH
    FEBS Lett; 2016 Sep; 590(17):2934-9. PubMed ID: 27477489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depolarization of Hippocampal Neurons Induces Formation of Nonsynaptic NMDA Receptor Islands Resembling Nascent Postsynaptic Densities.
    Tao-Cheng JH; Azzam R; Crocker V; Winters CA; Reese T
    eNeuro; 2015; 2(6):. PubMed ID: 26665164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of calpain may alter the postsynaptic density structure and modulate anchoring of NMDA receptors.
    Vinade L; Petersen JD; Do K; Dosemeci A; Reese TS
    Synapse; 2001 Jun; 40(4):302-9. PubMed ID: 11309846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.