BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 2621621)

  • 1. Changes in force and intracellular metabolites during fatigue of human skeletal muscle.
    Cady EB; Jones DA; Lynn J; Newham DJ
    J Physiol; 1989 Nov; 418():311-25. PubMed ID: 2621621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolic causes of slow relaxation in fatigued human skeletal muscle.
    Cady EB; Elshove H; Jones DA; Moll A
    J Physiol; 1989 Nov; 418():327-37. PubMed ID: 2621622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study.
    Mizuno T; Takanashi Y; Yoshizaki K; Kondo M
    Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR.
    Degroot M; Massie BM; Boska M; Gober J; Miller RG; Weiner MW
    Muscle Nerve; 1993 Jan; 16(1):91-8. PubMed ID: 8423837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise.
    Miller RG; Boska MD; Moussavi RS; Carson PJ; Weiner MW
    J Clin Invest; 1988 Apr; 81(4):1190-6. PubMed ID: 3350969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 31P study of fatigue and metabolism in human skeletal muscle with voluntary, intermittent contractions at different forces.
    Newham DJ; Cady EB
    NMR Biomed; 1990 Oct; 3(5):211-9. PubMed ID: 2288860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.
    Park JH; Brown RL; Park CR; Cohn M; Chance B
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of fatigue and recovery in paraplegic's quadriceps muscle subjected to intermittent FES.
    Giat Y; Mizrahi J; Levy M
    J Biomech Eng; 1996 Aug; 118(3):357-66. PubMed ID: 8872258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR.
    Baker AJ; Carson PJ; Miller RG; Weiner MW
    Muscle Nerve; 1994 Sep; 17(9):1002-9. PubMed ID: 8065387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergetic basis for the increased fatigability with ageing.
    Sundberg CW; Prost RW; Fitts RH; Hunter SK
    J Physiol; 2019 Oct; 597(19):4943-4957. PubMed ID: 31018011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery.
    Miller RG; Giannini D; Milner-Brown HS; Layzer RB; Koretsky AP; Hooper D; Weiner MW
    Muscle Nerve; 1987; 10(9):810-21. PubMed ID: 3683452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical stimulation of human tibialis anterior: (A) contractile properties are stable over a range of submaximal voltages; (B) high- and low-frequency fatigue are inducible and reliably assessable at submaximal voltages.
    Hanchard NC; Williamson M; Caley RW; Cooper RG
    Clin Rehabil; 1998 Oct; 12(5):413-27. PubMed ID: 9796932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle.
    Lännergren J; Westerblad H
    J Physiol; 1991 Mar; 434():307-22. PubMed ID: 1902515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of carbon dioxide on tetanic contraction of frog skeletal muscles studied by phosphorus nuclear magnetic resonance.
    Nakamura T; Yamada K
    J Physiol; 1992; 453():247-59. PubMed ID: 1464830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D
    J Med; 1993; 24(1):47-66. PubMed ID: 8501403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction.
    Sahlin K; Ren JM
    J Appl Physiol (1985); 1989 Aug; 67(2):648-54. PubMed ID: 2793665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phases of metabolism during progressive exercise to fatigue in human skeletal muscle.
    Kent-Braun JA; Miller RG; Weiner MW
    J Appl Physiol (1985); 1993 Aug; 75(2):573-80. PubMed ID: 8226454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoelectrical and metabolic changes in muscle fatigue.
    BĂ©liveau L; Van Hoecke J; Garapon-Bar C; Gaillard E; Herry JP; Atlan G; Bouissou P
    Int J Sports Med; 1992 Oct; 13 Suppl 1():S153-5. PubMed ID: 1483758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue.
    Baker AJ; Kostov KG; Miller RG; Weiner MW
    J Appl Physiol (1985); 1993 May; 74(5):2294-300. PubMed ID: 8335559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.