These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 2621622)

  • 1. The metabolic causes of slow relaxation in fatigued human skeletal muscle.
    Cady EB; Elshove H; Jones DA; Moll A
    J Physiol; 1989 Nov; 418():327-37. PubMed ID: 2621622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contraction coupling efficiency of human first dorsal interosseous muscle.
    Jubrias SA; Vollestad NK; Gronka RK; Kushmerick MJ
    J Physiol; 2008 Apr; 586(7):1993-2002. PubMed ID: 18238810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal Patterns of Biceps and Triceps Co-Contraction Following Elbow Surgery May Result in Elbow Stiffness.
    Beredjiklian PK; Kachooei AR; Gallant G; Abboudi J; Kwok M; Takei R; Hotchkiss RN
    Arch Bone Jt Surg; 2023; 11(6):398-403. PubMed ID: 37404301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle architecture, voluntary activation, and low-frequency fatigue do not explain the greater fatigue of older compared with young women during high-velocity contractions.
    Fitzgerald LF; Ryan MM; Bartlett MF; Miehm JD; Kent JA
    PLoS One; 2020; 15(11):e0234217. PubMed ID: 33141870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Location and Rate of the Phosphate Release Step in the Muscle Cross-Bridge Cycle.
    Offer G; Ranatunga KW
    Biophys J; 2020 Oct; 119(8):1501-1512. PubMed ID: 33010234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral fatigue: new mechanistic insights from recent technologies.
    Cè E; Longo S; Limonta E; Coratella G; Rampichini S; Esposito F
    Eur J Appl Physiol; 2020 Jan; 120(1):17-39. PubMed ID: 31745629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of blood flow occlusion during acute low-intensity isometric elbow flexion exercise.
    Copithorne DB; Rice CL
    Eur J Appl Physiol; 2019 Mar; 119(3):587-595. PubMed ID: 30734842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle.
    Cairns SP; Inman LAG; MacManus CP; van de Port IGL; Ruell PA; Thom JM; Thompson MW
    Eur J Appl Physiol; 2017 Aug; 117(8):1557-1571. PubMed ID: 28527013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing muscle fatigue during transcutaneous neuromuscular electrical stimulation by spatially and sequentially distributing electrical stimulation sources.
    Sayenko DG; Nguyen R; Popovic MR; Masani K
    Eur J Appl Physiol; 2014 Apr; 114(4):793-804. PubMed ID: 24390690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.
    Nocella M; Cecchi G; Bagni MA; Colombini B
    PLoS One; 2013; 8(10):e78918. PubMed ID: 24147145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple causes of fatigue during shortening contractions in rat slow twitch skeletal muscle.
    Hortemo KH; Munkvik M; Lunde PK; Sejersted OM
    PLoS One; 2013; 8(8):e71700. PubMed ID: 23977116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force decline during fatigue is due to both a decrease in the force per individual cross-bridge and the number of cross-bridges.
    Nocella M; Colombini B; Benelli G; Cecchi G; Bagni MA; Bruton J
    J Physiol; 2011 Jul; 589(Pt 13):3371-81. PubMed ID: 21540343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sodium bicarbonate ingestion on EMG, effort sense and ventilatory response during intense exercise and subsequent active recovery.
    Yamanaka R; Yunoki T; Arimitsu T; Lian CS; Yano T
    Eur J Appl Physiol; 2011 May; 111(5):851-8. PubMed ID: 21063723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the force-velocity relationship of fatigued muscle: implications for power production and possible causes.
    Jones DA
    J Physiol; 2010 Aug; 588(Pt 16):2977-86. PubMed ID: 20547674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors.
    Greenberg MJ; Moore JR
    Cytoskeleton (Hoboken); 2010 May; 67(5):273-85. PubMed ID: 20191566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy turnover in relation to slowing of contractile properties during fatiguing contractions of the human anterior tibialis muscle.
    Jones DA; Turner DL; McIntyre DB; Newham DJ
    J Physiol; 2009 Sep; 587(Pt 17):4329-38. PubMed ID: 19596896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise and fatigue.
    Ament W; Verkerke GJ
    Sports Med; 2009; 39(5):389-422. PubMed ID: 19402743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in contractile properties of human muscle in relationship to the loss of power and slowing of relaxation seen with fatigue.
    Jones DA; de Ruiter CJ; de Haan A
    J Physiol; 2006 Nov; 576(Pt 3):913-22. PubMed ID: 16916911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyogram median power frequency in dynamic exercise at medium exercise intensities.
    Ament W; Bonga GJ; Hof AL; Verkerke GJ
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):180-6. PubMed ID: 8891517
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.