BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26216497)

  • 1. Light-Quality-Adapted Carotenoid Photoprotection in the Photosystem of
    Hao JF; Qi CH; Yu BY; Wang HY; Gao RY; Yamano N; Ma F; Wang P; Xin YY; Zhang CF; Yu LJ; Zhang JP
    J Phys Chem Lett; 2024 Mar; 15(12):3470-3477. PubMed ID: 38512331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns.
    Liu LN; Aartsma TJ; Thomas JC; Lamers GE; Zhou BC; Zhang YZ
    J Biol Chem; 2008 Dec; 283(50):34946-53. PubMed ID: 18930925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Atomic force microscopy.
    Scheuring S; Seguin J; Marco S; Lévy D; Robert B; Rigaud JL
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1690-3. PubMed ID: 12574504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Watching the photosynthetic apparatus in native membranes.
    Scheuring S; Sturgis JN; Prima V; Bernadac A; Lévy D; Rigaud JL
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11293-7. PubMed ID: 15273291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of photosynthetic membranes.
    Hsin J; Chandler DE; Gumbart J; Harrison CB; Sener M; Strumpfer J; Schulten K
    Chemphyschem; 2010 Apr; 11(6):1154-9. PubMed ID: 20183845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the Supramolecular Organization of Photosynthetic Membranes within Freeze-fractured Leaf Tissues by Cryo-scanning Electron Microscopy.
    Charuvi D; Nevo R; Kaplan-Ashiri I; Shimoni E; Reich Z
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27403565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Photo-Bioelectrochemical Cells With the RC-LH Complex From
    Du J; Xin J; Liu M; Zhang X; He H; Wu J; Xu X
    Front Microbiol; 2022; 13():928046. PubMed ID: 35783423
    [No Abstract]   [Full Text] [Related]  

  • 8. Cryo-EM structures of the air-oxidized and dithionite-reduced photosynthetic alternative complex III from
    Shi Y; Xin Y; Wang C; Blankenship RE; Sun F; Xu X
    Sci Adv; 2020 Jul; 6(31):eaba2739. PubMed ID: 32832681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis underlying the electron transfer features of a blue copper protein auracyanin from the photosynthetic bacterium Roseiflexus castenholzii.
    Wang C; Xin Y; Min Z; Qi J; Zhang C; Xu X
    Photosynth Res; 2020 Mar; 143(3):301-314. PubMed ID: 31933173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote.
    Xin Y; Shi Y; Niu T; Wang Q; Niu W; Huang X; Ding W; Yang L; Blankenship RE; Xu X; Sun F
    Nat Commun; 2018 Apr; 9(1):1568. PubMed ID: 29674684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f.
    Majumder EL; Wolf BM; Liu H; Berg RH; Timlin JA; Chen M; Blankenship RE
    Photosynth Res; 2017 Nov; 134(2):183-192. PubMed ID: 28895022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminus of PufX plays a key role in dimerisation and assembly of the reaction center light-harvesting 1 complex from Rhodobacter sphaeroides.
    Qian P; Martin EC; Ng IW; Hunter CN
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):795-803. PubMed ID: 28587931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre.
    Grayson KJ; Faries KM; Huang X; Qian P; Dilbeck P; Martin EC; Hitchcock A; Vasilev C; Yuen JM; Niedzwiedzki DM; Leggett GJ; Holten D; Kirmaier C; Neil Hunter C
    Nat Commun; 2017 Jan; 8():13972. PubMed ID: 28054547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native FMO-reaction center supercomplex in green sulfur bacteria: an electron microscopy study.
    Bína D; Gardian Z; Vácha F; Litvín R
    Photosynth Res; 2016 Apr; 128(1):93-102. PubMed ID: 26589322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular organization of photosynthetic complexes in membranes of Roseiflexus castenholzii.
    Majumder EL; Olsen JD; Qian P; Collins AM; Hunter CN; Blankenship RE
    Photosynth Res; 2016 Jan; 127(1):117-30. PubMed ID: 26216497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii.
    Collins AM; Xin Y; Blankenship RE
    Biochim Biophys Acta; 2009 Aug; 1787(8):1050-6. PubMed ID: 19272352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii.
    Collins AM; Qian P; Tang Q; Bocian DF; Hunter CN; Blankenship RE
    Biochemistry; 2010 Sep; 49(35):7524-31. PubMed ID: 20672862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii.
    Xin Y; Pan J; Collins AM; Lin S; Blankenship RE
    Photosynth Res; 2012 Mar; 111(1-2):149-56. PubMed ID: 21792612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative look at structural variation among RC-LH1 'Core' complexes present in anoxygenic phototrophic bacteria.
    Gardiner AT; Nguyen-Phan TC; Cogdell RJ
    Photosynth Res; 2020 Aug; 145(2):83-96. PubMed ID: 32430765
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.