These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1106 related articles for article (PubMed ID: 26216538)

  • 1. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.
    Khorsand Rosa R; Oberbauer SF; Starr G; Parker La Puma I; Pop E; Ahlquist L; Baldwin T
    Glob Chang Biol; 2015 Dec; 21(12):4520-32. PubMed ID: 26183112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming acts through earlier snowmelt to advance but not extend alpine community flowering.
    Jabis MD; Winkler DE; Kueppers LM
    Ecology; 2020 Sep; 101(9):e03108. PubMed ID: 32455489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra.
    Assmann JJ; Myers-Smith IH; Phillimore AB; Bjorkman AD; Ennos RE; Prevéy JS; Henry GHR; Schmidt NM; Hollister RD
    Glob Chang Biol; 2019 Jul; 25(7):2258-2274. PubMed ID: 30963662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term trends mask variation in the direction and magnitude of short-term phenological shifts.
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Am J Bot; 2013 Jul; 100(7):1398-406. PubMed ID: 23660568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flowering time responses to warming drive reproductive fitness in a changing Arctic.
    Collins CG; Angert A; Clark K; Elmendorf S; Elphinstone C; Henry G
    Ann Bot; 2024 Jan; ():. PubMed ID: 38252914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities.
    Kelsey KC; Pedersen SH; Leffler AJ; Sexton JO; Feng M; Welker JM
    Glob Chang Biol; 2021 Apr; 27(8):1572-1586. PubMed ID: 33372357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snow melt timing acts independently and in conjunction with temperature accumulation to drive subalpine plant phenology.
    Jerome DK; Petry WK; Mooney KA; Iler AM
    Glob Chang Biol; 2021 Oct; 27(20):5054-5069. PubMed ID: 34265142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early snowmelt and warmer, drier summers shrink postflowering transition times in subalpine wildflowers.
    Sethi ML; Theobald EJ; Breckheimer I; Hille Ris Lambers J
    Ecology; 2020 Dec; 101(12):e03171. PubMed ID: 32852790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Arctic plant phenological sensitivity to climate change from historical records.
    Panchen ZA; Gorelick R
    Ecol Evol; 2017 Mar; 7(5):1325-1338. PubMed ID: 28261446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
    Munson SM; Sher AA
    Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arctic plant responses to changing abiotic factors in northern Alaska.
    Barrett RT; Hollister RD; Oberbauer SF; Tweedie CE
    Am J Bot; 2015 Dec; 102(12):2020-31. PubMed ID: 26672012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.
    Gezon ZJ; Inouye DW; Irwin RE
    Glob Chang Biol; 2016 May; 22(5):1779-93. PubMed ID: 26833694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.