These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 26216841)
21. Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Martín MA; Fernández R; Serrano A; Siles JA Waste Manag; 2013 Jul; 33(7):1633-9. PubMed ID: 23680268 [TBL] [Abstract][Full Text] [Related]
22. Thermophilic anaerobic digestion of industrial orange waste. Kaparaju PL; Rintala JA Environ Technol; 2006 Jun; 27(6):623-33. PubMed ID: 16865918 [TBL] [Abstract][Full Text] [Related]
23. Anaerobic digestion of tuna waste for the production of volatile fatty acids. Bermúdez-Penabad N; Kennes C; Veiga MC Waste Manag; 2017 Oct; 68():96-102. PubMed ID: 28629710 [TBL] [Abstract][Full Text] [Related]
24. Reduction of volatile fatty acids and odor offensiveness by anaerobic digestion and solid separation of dairy manure during manure storage. Page LH; Ni JQ; Zhang H; Heber AJ; Mosier NS; Liu X; Joo HS; Ndegwa PM; Harrison JH J Environ Manage; 2015 Apr; 152():91-8. PubMed ID: 25617873 [TBL] [Abstract][Full Text] [Related]
25. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout. Colazo AB; Sánchez A; Font X; Colón J Waste Manag; 2015 Sep; 43():84-97. PubMed ID: 26123979 [TBL] [Abstract][Full Text] [Related]
26. Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor. Jeong E; Kim HW; Nam JY; Shin HS Bioresour Technol; 2010 Jan; 101 Suppl 1():S7-S12. PubMed ID: 19467588 [TBL] [Abstract][Full Text] [Related]
27. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor. Angelidaki I; Chen X; Cui J; Kaparaju P; Ellegaard L Water Res; 2006 Aug; 40(14):2621-8. PubMed ID: 16839585 [TBL] [Abstract][Full Text] [Related]
28. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates. Kim M; Kim BC; Choi Y; Nam K Bioresour Technol; 2017 Dec; 245(Pt A):590-597. PubMed ID: 28910646 [TBL] [Abstract][Full Text] [Related]
29. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration. Colon G; Sager JC Life Support Biosph Sci; 2001; 7(4):291-9. PubMed ID: 11676457 [TBL] [Abstract][Full Text] [Related]
30. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Chen X; Yan W; Sheng K; Sanati M Bioresour Technol; 2014 Feb; 154():215-21. PubMed ID: 24398149 [TBL] [Abstract][Full Text] [Related]
31. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Ganesh R; Torrijos M; Sousbie P; Lugardon A; Steyer JP; Delgenes JP Waste Manag; 2014 May; 34(5):875-85. PubMed ID: 24679584 [TBL] [Abstract][Full Text] [Related]
32. Enhanced methane production from rice straw co-digested with anaerobic sludge from pulp and paper mill treatment process. Mussoline W; Esposito G; Lens P; Spagni A; Giordano A Bioresour Technol; 2013 Nov; 148():135-43. PubMed ID: 24045200 [TBL] [Abstract][Full Text] [Related]
33. Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision. Moertelmaier C; Li C; Winter J; Gallert C Bioresour Technol; 2014 Aug; 166():479-84. PubMed ID: 24950093 [TBL] [Abstract][Full Text] [Related]
34. Impact of volatile fatty acids to alkalinity ratio and volatile solids on biogas production under thermophilic conditions. Issah AA; Kabera T Waste Manag Res; 2021 Jun; 39(6):871-878. PubMed ID: 32993465 [TBL] [Abstract][Full Text] [Related]
35. Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide. Xin L; Guo Z; Xiao X; Peng C; Zeng P; Feng W; Xu W Environ Sci Pollut Res Int; 2019 Jul; 26(19):19434-19444. PubMed ID: 31077050 [TBL] [Abstract][Full Text] [Related]
36. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Eryildiz B; Lukitawesa ; Taherzadeh MJ Bioresour Technol; 2020 Apr; 302():122800. PubMed ID: 31986336 [TBL] [Abstract][Full Text] [Related]
37. A study of two-stage anaerobic digestion of solid potato waste using reactors under mesophilic and thermophilic conditions. Parawira W; Murto M; Read JS; Mattiasson B Environ Technol; 2007 Nov; 28(11):1205-16. PubMed ID: 18290530 [TBL] [Abstract][Full Text] [Related]
38. Co-digestion of sewage sludge and sterilized solid slaughterhouse waste: methane production efficiency and process limitations. Pitk P; Kaparaju P; Palatsi J; Affes R; Vilu R Bioresour Technol; 2013 Apr; 134():227-32. PubMed ID: 23500579 [TBL] [Abstract][Full Text] [Related]
39. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Cysneiros D; Banks CJ; Heaven S; Karatzas KA Bioresour Technol; 2012 Nov; 123():263-71. PubMed ID: 22940328 [TBL] [Abstract][Full Text] [Related]
40. Comparison of metabolic kinetics during high and low solids anaerobic digestion of fecal sludge. Kinyua M; Stuart K Biotechnol Bioeng; 2022 Apr; 119(4):1164-1170. PubMed ID: 34935126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]