These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26216975)

  • 1. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics.
    Chorin AJ; Lu F
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9804-9. PubMed ID: 26216975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.
    Venturi D; Karniadakis GE
    Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130754. PubMed ID: 24910519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation of delay equation climate models using the Mori-Zwanzig formalism.
    Falkena SKJ; Quinn C; Sieber J; Frank J; Dijkstra HA
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190075. PubMed ID: 31423091
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Gouasmi A; Parish EJ; Duraisamy K
    Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170385. PubMed ID: 28989314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing generalized Langevin equations and generalized Fokker-Planck equations.
    Darve E; Solomon J; Kia A
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10884-9. PubMed ID: 19549838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NARMAX representation and identification of ankle dynamics.
    Kukreja SL; Galiana HL; Kearney RE
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):70-81. PubMed ID: 12617526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the projection operator formalism to non-hamiltonian dynamics.
    Xing J; Kim KS
    J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.
    Tsai JS; Hsu WT; Lin LG; Guo SM; Tann JW
    ISA Trans; 2014 Jan; 53(1):56-75. PubMed ID: 24012389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural-network-based approximate output regulation of discrete-time nonlinear systems.
    Lan W; Huang J
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1196-208. PubMed ID: 17668671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning moment closure in reaction-diffusion systems with spatial dynamic Boltzmann distributions.
    Ernst OK; Bartol TM; Sejnowski TJ; Mjolsness E
    Phys Rev E; 2019 Jun; 99(6-1):063315. PubMed ID: 31330605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks.
    Yang Q; Vance JB; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):994-1001. PubMed ID: 18632390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic synchronization: a nonlinear predictive filtering approach.
    Kurian AP; Puthusserypady S
    Chaos; 2006 Mar; 16(1):013126. PubMed ID: 16599757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches.
    Reinhardt V; Winckler M; Lebiedz D
    J Phys Chem A; 2008 Feb; 112(8):1712-8. PubMed ID: 18247506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear theory for filtering nonlinear multiscale systems with model error.
    Berry T; Harlim J
    Proc Math Phys Eng Sci; 2014 Jul; 470(2167):20140168. PubMed ID: 25002829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated reverse engineering of nonlinear dynamical systems.
    Bongard J; Lipson H
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):9943-8. PubMed ID: 17553966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.
    Xu D; Lu F
    Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach.
    Yang C; Ge SS; Xiang C; Chai T; Lee TH
    IEEE Trans Neural Netw; 2008 Nov; 19(11):1873-86. PubMed ID: 18990642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust discretizations versus increase of the time step for the Lorenz system.
    Letellier C; Mendes EM
    Chaos; 2005 Mar; 15(1):13110. PubMed ID: 15836264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Padé Numerical Integration in Simulation of Conservative Chaotic Systems.
    Butusov D; Karimov A; Tutueva A; Kaplun D; Nepomuceno EG
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.