These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 26216994)
1. Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order. Turner PA; Griffis TJ; Lee X; Baker JM; Venterea RT; Wood JD Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9839-43. PubMed ID: 26216994 [TBL] [Abstract][Full Text] [Related]
2. [Indirect Nitrous Oxide Emissions from an Agricultural Headwater Stream During the Rainy Season in the Upper Reach of the Yangtze River]. Tian LL; Wang Z; Zhu B Huan Jing Ke Xue; 2018 Dec; 39(12):5391-5399. PubMed ID: 30628382 [TBL] [Abstract][Full Text] [Related]
3. Indirect Nitrous Oxide Emission Factors for Agricultural Field Drains and Headwater Streams. Hama-Aziz ZQ; Hiscock KM; Cooper RJ Environ Sci Technol; 2017 Jan; 51(1):301-307. PubMed ID: 27990802 [TBL] [Abstract][Full Text] [Related]
4. Review and analysis of global agricultural N₂O emissions relevant to the UK. Buckingham S; Anthony S; Bellamy PH; Cardenas LM; Higgins S; McGeough K; Topp CF Sci Total Environ; 2014 Jul; 487():164-72. PubMed ID: 24784741 [TBL] [Abstract][Full Text] [Related]
5. Surface nitrous oxide (N Zhang W; Li H; Xiao Q; Jiang S; Li X Environ Pollut; 2020 Aug; 263(Pt A):114457. PubMed ID: 32247923 [TBL] [Abstract][Full Text] [Related]
6. Nitrous oxide emissions are enhanced in a warmer and wetter world. Griffis TJ; Chen Z; Baker JM; Wood JD; Millet DB; Lee X; Venterea RT; Turner PA Proc Natl Acad Sci U S A; 2017 Nov; 114(45):12081-12085. PubMed ID: 29078277 [TBL] [Abstract][Full Text] [Related]
7. A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots. Turner PA; Griffis TJ; Mulla DJ; Baker JM; Venterea RT Sci Total Environ; 2016 Dec; 572():442-449. PubMed ID: 27543947 [TBL] [Abstract][Full Text] [Related]
8. Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Lawrence NC; Tenesaca CG; VanLoocke A; Hall SJ Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34750266 [TBL] [Abstract][Full Text] [Related]
9. Hydrogeological Controls on Regional-Scale Indirect Nitrous Oxide Emission Factors for Rivers. Cooper RJ; Wexler SK; Adams CA; Hiscock KM Environ Sci Technol; 2017 Sep; 51(18):10440-10448. PubMed ID: 28841017 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Indirect N Qin X; Li Y; Goldberg S; Wan Y; Fan M; Liao Y; Wang B; Gao Q; Li Y Environ Sci Technol; 2019 Sep; 53(18):10781-10791. PubMed ID: 31438664 [TBL] [Abstract][Full Text] [Related]
11. Global riverine nitrous oxide emissions: The role of small streams and large rivers. Marzadri A; Amatulli G; Tonina D; Bellin A; Shen LQ; Allen GH; Raymond PA Sci Total Environ; 2021 Jul; 776():145148. PubMed ID: 33647646 [TBL] [Abstract][Full Text] [Related]
12. Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales. Wang J; Wang G; Zhang S; Xin Y; Jiang C; Liu S; He X; McDowell WH; Xia X Glob Chang Biol; 2022 Dec; 28(24):7270-7285. PubMed ID: 36176238 [TBL] [Abstract][Full Text] [Related]
13. Data-driven estimates of global nitrous oxide emissions from croplands. Wang Q; Zhou F; Shang Z; Ciais P; Winiwarter W; Jackson RB; Tubiello FN; Janssens-Maenhout G; Tian H; Cui X; Canadell JG; Piao S; Tao S Natl Sci Rev; 2020 Feb; 7(2):441-452. PubMed ID: 34692059 [TBL] [Abstract][Full Text] [Related]
14. DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. Del Grosso SJ; Parton WJ; Mosier AR; Walsh MK; Ojima DS; Thornton PE J Environ Qual; 2006; 35(4):1451-60. PubMed ID: 16825465 [TBL] [Abstract][Full Text] [Related]
15. Predicting nitrous oxide emissions through riverine networks. Marzadri A; Bellin A; Tank JL; Tonina D Sci Total Environ; 2022 Oct; 843():156844. PubMed ID: 35750169 [TBL] [Abstract][Full Text] [Related]
16. Global nitrous oxide emissions from livestock manure during 1890-2020: An IPCC tier 2 inventory. Zhang L; Pan S; Ouyang Z; Canadell JG; Chang J; Conchedda G; Davidson EA; Lu F; Pan N; Qin X; Shi H; Tubiello FN; Wang X; Zhang Y; Tian H Glob Chang Biol; 2024 May; 30(5):e17303. PubMed ID: 38741339 [TBL] [Abstract][Full Text] [Related]
17. Hydrologic Connectivity Regulates Riverine N Hu M; Yu Z; Griffis TJ; Yang WH; Mohn J; Millet DB; Baker JM; Wang D Environ Sci Technol; 2024 Jun; 58(22):9701-9713. PubMed ID: 38780660 [TBL] [Abstract][Full Text] [Related]
18. Suburban agriculture increased N levels but decreased indirect N Yan X; Han H; Qiu J; Zhang L; Xia Y; Yan X Water Res; 2022 Jul; 220():118639. PubMed ID: 35640505 [TBL] [Abstract][Full Text] [Related]
19. A review of indirect N Tian L; Cai Y; Akiyama H Environ Pollut; 2019 Feb; 245():300-306. PubMed ID: 30447472 [TBL] [Abstract][Full Text] [Related]
20. [Nitrous Oxide Emissions and Its Influencing Factors from an Agricultural Headwater Ditch During a Maize Season in the Hilly Area of Central Sichuan Basin]. Tian LL; Zhu B; Wang T; Zhao Y; Dong HW; Ren GQ; Hu L Huan Jing Ke Xue; 2017 May; 38(5):2074-2083. PubMed ID: 29965116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]