These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26217058)

  • 1. Spatially variant periodic structures in electromagnetics.
    Rumpf RC; Pazos JJ; Digaum JL; Kuebler SM
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of spatially variant lattices.
    Rumpf RC; Pazos J
    Opt Express; 2012 Jul; 20(14):15263-74. PubMed ID: 22772224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent control of phase and power in spatially variant self-collimating photonic crystals.
    Gutierrez JJ; Martinez NP; Rumpf RC
    J Opt Soc Am A Opt Image Sci Vis; 2019 Sep; 36(9):1534-1539. PubMed ID: 31503847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metasurfaces with Bound States in the Continuum Enabled by Eliminating First Fourier Harmonic Component in Lattice Parameters.
    Lee SG; Kim SH; Kee CS
    Phys Rev Lett; 2021 Jan; 126(1):013601. PubMed ID: 33480783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tight control of light beams in photonic crystals with spatially-variant lattice orientation.
    Digaum JL; Pazos JJ; Chiles J; D'Archangel J; Padilla G; Tatulian A; Rumpf RC; Fathpour S; Boreman GD; Kuebler SM
    Opt Express; 2014 Oct; 22(21):25788-804. PubMed ID: 25401613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holographic fabrication of functionally graded photonic lattices through spatially specified phase patterns.
    Lutkenhaus J; George D; Arigong B; Zhang H; Philipose U; Lin Y
    Appl Opt; 2014 Apr; 53(12):2548-55. PubMed ID: 24787580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime.
    Vasić B; Isić G; Gajić R; Hingerl K
    Opt Express; 2010 Sep; 18(19):20321-33. PubMed ID: 20940924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase diagram for the transition from photonic crystals to dielectric metamaterials.
    Rybin MV; Filonov DS; Samusev KB; Belov PA; Kivshar YS; Limonov MF
    Nat Commun; 2015 Dec; 6():10102. PubMed ID: 26626302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.
    Grant PS; Castles F; Lei Q; Wang Y; Janurudin JM; Isakov D; Speller S; Dancer C; Grovenor CR
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic parameter retrieval from inhomogeneous metamaterials.
    Smith DR; Vier DC; Koschny T; Soukoulis CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036617. PubMed ID: 15903615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
    Azari M; Hatami M; Meygoli V; Yousefi E
    Appl Opt; 2016 Nov; 55(31):8651-8656. PubMed ID: 27828257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.
    Torrent D; Sánchez-Dehesa J
    Phys Rev Lett; 2009 Aug; 103(6):064301. PubMed ID: 19792570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory.
    Liu R; Cui TJ; Huang D; Zhao B; Smith DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026606. PubMed ID: 17930166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of metasurfaces: physics and applications.
    Chen HT; Taylor AJ; Yu N
    Rep Prog Phys; 2016 Jul; 79(7):076401. PubMed ID: 27308726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial optical solitons in nonlinear photonic crystals.
    Sukhorukov AA; Kivshar YS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036609. PubMed ID: 11909287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete photonic bandgaps in 12-fold symmetric quasicrystals.
    Zoorob ME; Charlton MD; Parker GJ; Baumberg JJ; Netti MC
    Nature; 2000 Apr; 404(6779):740-3. PubMed ID: 10783882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of planar self-collimating photonic crystals.
    Rumpf RC; Pazos JJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jul; 30(7):1297-304. PubMed ID: 24323142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capsize of polarization in dilute photonic crystals.
    Gevorkian Z; Hakhoumian A; Gasparian V; Cuevas E
    Sci Rep; 2017 Nov; 7(1):16593. PubMed ID: 29185471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure analysis of two-dimensional nonlinear self-trapped photonic lattices in anisotropic photorefractive media.
    Terhalle B; Träger D; Tang L; Imbrock J; Denz C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):057601. PubMed ID: 17280027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.