These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26217701)

  • 1. Raw data for the identification of SUMOylated proteins in S. cerevisiae subjected to two types of osmotic shock, using affinity purification coupled with mass spectrometry.
    Srikumar T; Lewicki MC; Raught B
    Data Brief; 2015 Mar; 2():29-31. PubMed ID: 26217701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery.
    Lewicki MC; Srikumar T; Johnson E; Raught B
    J Proteomics; 2015 Apr; 118():39-48. PubMed ID: 25434491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data for the identification of proteins and post-translational modifications of proteins associated to histones H3 and H4 in S. cerevisiae, using tandem affinity purification coupled with mass spectrometry.
    Valero ML; Sendra R; Pamblanco M
    Data Brief; 2016 Mar; 6():965-9. PubMed ID: 26949727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BioID data of c-MYC interacting protein partners in cultured cells and xenograft tumors.
    Chan PK; Srikumar T; Dingar D; Kalkat M; Penn LZ; Raught B
    Data Brief; 2014 Dec; 1():76-8. PubMed ID: 26217692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification.
    Nie M; Vashisht AA; Wohlschlegel JA; Boddy MN
    Sci Rep; 2015 Sep; 5():14389. PubMed ID: 26404184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of SUMOylated Proteins in Bacteria Using the Trypanosoma brucei Enzymatic System.
    Iribarren PA; Berazategui MA; Cazzulo JJ; Alvarez VE
    PLoS One; 2015; 10(8):e0134950. PubMed ID: 26258470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer.
    Lopitz-Otsoa F; Delgado TC; Lachiondo-Ortega S; Azkargorta M; Elortza F; Rodríguez MS; Martínez-Chantar ML
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31736480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUMOlock reveals a more complete Aspergillus nidulans SUMOylome.
    Horio T; Szewczyk E; Oakley CE; Osmani AH; Osmani SA; Oakley BR
    Fungal Genet Biol; 2019 Jun; 127():50-59. PubMed ID: 30849444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of cross talk between SUMOylation and ubiquitylation using a sequential peptide immunopurification approach.
    McManus FP; Lamoliatte F; Thibault P
    Nat Protoc; 2017 Nov; 12(11):2342-2358. PubMed ID: 29048423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Substrates of Protein-Group SUMOylation.
    Psakhye I; Jentsch S
    Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-yield double-purification proteomics strategy for the identification of SUMO sites.
    Hendriks IA; Vertegaal AC
    Nat Protoc; 2016 Sep; 11(9):1630-49. PubMed ID: 27560170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of SUMO-conjugated proteins and their SUMO attachment sites using proteomic mass spectrometry.
    Wohlschlegel JA
    Methods Mol Biol; 2009; 497():33-49. PubMed ID: 19107409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of SUMOylated Proteins in Cells and In Vivo Using the bioSUMO Strategy.
    Pirone L; Xolalpa W; Mayor U; Barrio R; Sutherland JD
    Methods Mol Biol; 2016; 1475():161-9. PubMed ID: 27631805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of SUMO-dependent ubiquitylation in vitro.
    Keusekotten K; Praefcke GJ
    Methods Mol Biol; 2012; 832():111-23. PubMed ID: 22350879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of SUMO-1 modified IκBα and complex formation with NF-κB.
    Lens Z; Dewitte F; Van Lint C; de Launoit Y; Villeret V; Verger A
    Protein Expr Purif; 2011 Dec; 80(2):211-6. PubMed ID: 21708266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Identification and Quantification of SUMO Target Proteins.
    Hendriks IA; Vertegaal AC
    Methods Mol Biol; 2016; 1475():171-93. PubMed ID: 27631806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms.
    Iribarren PA; Berazategui MA; Bayona JC; Almeida IC; Cazzulo JJ; Alvarez VE
    Cell Microbiol; 2015 Oct; 17(10):1413-22. PubMed ID: 26096196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of SUMO target proteins by quantitative proteomics.
    Andersen JS; Matic I; Vertegaal AC
    Methods Mol Biol; 2009; 497():19-31. PubMed ID: 19107408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions.
    Lumpkin RJ; Gu H; Zhu Y; Leonard M; Ahmad AS; Clauser KR; Meyer JG; Bennett EJ; Komives EA
    Nat Commun; 2017 Oct; 8(1):1171. PubMed ID: 29079793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of SUMO targets by a novel proteomic approach in plants(F).
    López-Torrejón G; Guerra D; Catalá R; Salinas J; del Pozo JC
    J Integr Plant Biol; 2013 Jan; 55(1):96-107. PubMed ID: 23164430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.