These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 26217950)
1. The role of microtubules in electrotaxis of rat Walker carcinosarcoma WC256 cells. Krecioch I; Madeja Z; Lasota S; Zimolag E; Sroka J Acta Biochim Pol; 2015; 62(3):401-6. PubMed ID: 26217950 [TBL] [Abstract][Full Text] [Related]
2. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256. Sroka J; Krecioch I; Zimolag E; Lasota S; Rak M; Kedracka-Krok S; Borowicz P; Gajek M; Madeja Z PLoS One; 2016; 11(2):e0149133. PubMed ID: 26863616 [TBL] [Abstract][Full Text] [Related]
3. Electrotaxis: Cell Directional Movement in Electric Fields. Sroka J; Zimolag E; Lasota S; Korohoda W; Madeja Z Methods Mol Biol; 2018; 1749():325-340. PubMed ID: 29526007 [TBL] [Abstract][Full Text] [Related]
4. In vitro migraton of Walker 256 carcinosarcoma cells: dependence on microtubule and microfilament function. Spiro TP; Mundy GR J Natl Cancer Inst; 1980 Aug; 65(2):463-7. PubMed ID: 6931262 [TBL] [Abstract][Full Text] [Related]
5. Shape changes and chemokinesis of Walker 256 carcinosarcoma cells in response to colchicine, vinblastine, nocodazole and taxol. Keller HU; Zimmermann A Invasion Metastasis; 1986; 6(1):33-43. PubMed ID: 2867063 [TBL] [Abstract][Full Text] [Related]
6. The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Sroka J; Kamiński R; Michalik M; Madeja Z; Przestalski S; Korohoda W Cell Mol Biol Lett; 2004; 9(1):15-30. PubMed ID: 15048148 [TBL] [Abstract][Full Text] [Related]
7. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Keller H; Eggli P Cell Motil Cytoskeleton; 1998; 41(2):181-93. PubMed ID: 9786092 [TBL] [Abstract][Full Text] [Related]
8. [Effects of direct current electric field on directional migration and arrangement of dermal fibroblasts in neonatal BALB/c mice and the mechanisms]. Liu J; Ren X; Guo X; Sun H; Tang Y; Luo Z; Zhang Q; Zhang D; Huang Y; Zhang J Zhonghua Shao Shang Za Zhi; 2016 Apr; 32(4):224-31. PubMed ID: 27093934 [TBL] [Abstract][Full Text] [Related]
9. Phorbol myristate acetate (PMA) suppresses polarization and locomotion and alters F-actin content of Walker carcinosarcoma cells. Keller HU; Zimmermann A; Cottier H Int J Cancer; 1985 Oct; 36(4):495-501. PubMed ID: 4044057 [TBL] [Abstract][Full Text] [Related]
10. Phenotype modulation in non-adherent and adherent sublines of Walker carcinosarcoma cells: the role of cell-substratum contacts and microtubules in controlling cell shape, locomotion and cytoskeletal structure. Sroka J; von Gunten M; Dunn GA; Keller HU Int J Biochem Cell Biol; 2002 Jul; 34(7):882-99. PubMed ID: 11950602 [TBL] [Abstract][Full Text] [Related]
11. Contact guidance of Walker carcinosarcoma cells by the underlying normal fibroblasts is inhibited by RGD-containing synthetic peptides. Madeja Z; Sroka J Folia Histochem Cytobiol; 2002; 40(3):251-60. PubMed ID: 12219835 [TBL] [Abstract][Full Text] [Related]
12. Ascorbic acid inhibits the migration of Walker 256 carcinosarcoma cells. Wybieralska E; Koza M; Sroka J; Czyz J; Madeja Z Cell Mol Biol Lett; 2008; 13(1):103-11. PubMed ID: 17965972 [TBL] [Abstract][Full Text] [Related]
13. Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields. Kim MS; Lee MH; Kwon BJ; Koo MA; Seon GM; Park JC Biochem Biophys Res Commun; 2015 May; 460(2):255-60. PubMed ID: 25772616 [TBL] [Abstract][Full Text] [Related]
14. Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Gutjahr MC; Rossy J; Niggli V Exp Cell Res; 2005 Aug; 308(2):422-38. PubMed ID: 15950966 [TBL] [Abstract][Full Text] [Related]
15. Impact of elastic substrate on the dynamic heterogeneity of WC256 Walker carcinosarcoma cells. Mielnicka A; Kołodziej T; Dziob D; Lasota S; Sroka J; Rajfur Z Sci Rep; 2023 Sep; 13(1):15743. PubMed ID: 37735532 [TBL] [Abstract][Full Text] [Related]
16. Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration. Tai G; Reid B; Cao L; Zhao M Methods Mol Biol; 2009; 571():77-97. PubMed ID: 19763960 [TBL] [Abstract][Full Text] [Related]
17. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts. Finkelstein E; Chang W; Chao PH; Gruber D; Minden A; Hung CT; Bulinski JC J Cell Sci; 2004 Mar; 117(Pt 8):1533-45. PubMed ID: 15020680 [TBL] [Abstract][Full Text] [Related]
18. Protrusion, contraction and segregation of membrane components associated with passive deformation and shape recovery of Walker carcinosarcoma cells. Schütz K; Keller H Eur J Cell Biol; 1998 Oct; 77(2):100-10. PubMed ID: 9840459 [TBL] [Abstract][Full Text] [Related]
19. The influence of transplantable rat mammary carcinomas and the Walker carcinoma 256 on the lipid composition of the muscle and liver of the host. Carruthers C; Kim U Cancer Res; 1968 Jun; 28(6):1110-5. PubMed ID: 4298057 [No Abstract] [Full Text] [Related]