BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26218034)

  • 1. Asymmetric signal amplification for simultaneous SERS detection of multiple cancer markers with significantly different levels.
    Ye S; Wu Y; Zhai X; Tang B
    Anal Chem; 2015 Aug; 87(16):8242-9. PubMed ID: 26218034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Surface-Enhanced Raman Spectroscopy Detection of Multiplexed MicroRNA Biomarkers.
    Zhou W; Tian YF; Yin BC; Ye BC
    Anal Chem; 2017 Jun; 89(11):6120-6128. PubMed ID: 28488851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DNA-linker-DNA bifunctional probe for simultaneous SERS detection of miRNAs via symmetric signal amplification.
    Ye S; Wang M; Wang Z; Zhang N; Luo X
    Chem Commun (Camb); 2018 Jul; 54(56):7786-7789. PubMed ID: 29943776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.
    Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R
    Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiple signal amplification sandwich-type SERS biosensor for femtomolar detection of miRNA.
    Shao H; Lin H; Guo Z; Lu J; Jia Y; Ye M; Su F; Niu L; Kang W; Wang S; Hu Y; Huang Y
    Biosens Bioelectron; 2019 Oct; 143():111616. PubMed ID: 31472412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars.
    Lee JU; Kim WH; Lee HS; Park KH; Sim SJ
    Small; 2019 Apr; 15(17):e1804968. PubMed ID: 30828996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar.
    Kim WH; Lee JU; Song S; Kim S; Choi YJ; Sim SJ
    Analyst; 2019 Feb; 144(5):1768-1776. PubMed ID: 30672519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes.
    Zheng J; Hu Y; Bai J; Ma C; Li J; Li Y; Shi M; Tan W; Yang R
    Anal Chem; 2014 Feb; 86(4):2205-12. PubMed ID: 24437937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA.
    Wu Y; Li Y; Han H; Zhao C; Zhang X
    Anal Biochem; 2019 Jan; 564-565():16-20. PubMed ID: 30312618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS-based direct and sandwich assay methods for mir-21 detection.
    Guven B; Dudak FC; Boyaci IH; Tamer U; Ozsoz M
    Analyst; 2014 Mar; 139(5):1141-7. PubMed ID: 24418951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques.
    Yao GH; Liang RP; Yu XD; Huang CF; Zhang L; Qiu JD
    Anal Chem; 2015 Jan; 87(2):929-36. PubMed ID: 25494977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPRi/SERS dual-mode biosensor based on ployA-DNA/ miRNA/AuNPs-enhanced probe sandwich structure for the detection of multiple miRNA biomarkers.
    Li Y; Jiang L; Yu Z; Jiang C; Zhang F; Jin S
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123664. PubMed ID: 38029598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles.
    Chen J; Li Z; Ge J; Yang R; Zhang L; Qu LB; Wang HQ; Zhang L
    Talanta; 2015 Jul; 139():226-32. PubMed ID: 25882430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence and SERS Imaging for the Simultaneous Absolute Quantification of Multiple miRNAs in Living Cells.
    Ye S; Li X; Wang M; Tang B
    Anal Chem; 2017 May; 89(9):5124-5130. PubMed ID: 28358481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe.
    Li X; Wang L; Li C
    Chemistry; 2015 Apr; 21(18):6817-22. PubMed ID: 25766032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample preparation-free, real-time detection of microRNA in human serum using piezoelectric cantilever biosensors at attomole level.
    Johnson BN; Mutharasan R
    Anal Chem; 2012 Dec; 84(23):10426-36. PubMed ID: 23101954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.
    Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A
    Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.