BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26218224)

  • 1. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm.
    Andrikou C; Pai CY; Su YH; Arnone MI
    Elife; 2015 Jul; 4():. PubMed ID: 26218224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
    Ben-Tabou de-Leon S; Davidson EH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
    Ettensohn CA
    Development; 2009 Jan; 136(1):11-21. PubMed ID: 19060330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omics approaches to study gene regulatory networks for development in echinoderms.
    Lowe EK; Cuomo C; Arnone MI
    Brief Funct Genomics; 2017 Sep; 16(5):299-308. PubMed ID: 28957458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echinoderm development and evolution in the post-genomic era.
    Cary GA; Hinman VF
    Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.
    Hinman VF; Yankura KA; McCauley BS
    Biochim Biophys Acta; 2009 Apr; 1789(4):326-32. PubMed ID: 19284985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echinoderm systems for gene regulatory studies in evolution and development.
    Arnone MI; Andrikou C; Annunziata R
    Curr Opin Genet Dev; 2016 Aug; 39():129-137. PubMed ID: 27389072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental gene network analysis.
    Revilla-i-Domingo R; Davidson EH
    Int J Dev Biol; 2003; 47(7-8):695-703. PubMed ID: 14756345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate.
    Levin N; Yamakawa S; Morino Y; Wada H
    Curr Top Dev Biol; 2022; 146():1-24. PubMed ID: 35152980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors.
    Andrikou C; Iovene E; Rizzo F; Oliveri P; Arnone MI
    Evodevo; 2013 Dec; 4(1):33. PubMed ID: 24295205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The myogenic repressor gene Holes in muscles is a direct transcriptional target of Twist and Tinman in the Drosophila embryonic mesoderm.
    Elwell JA; Lovato TL; Adams MM; Baca EM; Lee T; Cripps RM
    Dev Biol; 2015 Apr; 400(2):266-76. PubMed ID: 25704510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic neurogenesis in echinoderms.
    Hinman VF; Burke RD
    Wiley Interdiscip Rev Dev Biol; 2018 Jul; 7(4):e316. PubMed ID: 29470839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo.
    Martik ML; McClay DR
    Elife; 2015 Sep; 4():. PubMed ID: 26402456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.