These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 26218232)
21. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases. Flanagan LA; Parkin A Biochem Soc Trans; 2016 Feb; 44(1):315-28. PubMed ID: 26862221 [TBL] [Abstract][Full Text] [Related]
22. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states. Volbeda A; Martin L; Liebgott PP; De Lacey AL; Fontecilla-Camps JC Metallomics; 2015 Apr; 7(4):710-8. PubMed ID: 25780984 [TBL] [Abstract][Full Text] [Related]
23. Designed surface residue substitutions in [NiFe] hydrogenase that improve electron transfer characteristics. Yonemoto IT; Smith HO; Weyman PD Int J Mol Sci; 2015 Jan; 16(1):2020-33. PubMed ID: 25603181 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Volbeda A; Charon MH; Piras C; Hatchikian EC; Frey M; Fontecilla-Camps JC Nature; 1995 Feb; 373(6515):580-7. PubMed ID: 7854413 [TBL] [Abstract][Full Text] [Related]
25. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase. Greene BL; Wu CH; McTernan PM; Adams MW; Dyer RB J Am Chem Soc; 2015 Apr; 137(13):4558-66. PubMed ID: 25790178 [TBL] [Abstract][Full Text] [Related]
26. Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold surfaces. Millo D; Pandelia ME; Utesch T; Wisitruangsakul N; Mroginski MA; Lubitz W; Hildebrandt P; Zebger I J Phys Chem B; 2009 Nov; 113(46):15344-51. PubMed ID: 19845323 [TBL] [Abstract][Full Text] [Related]
27. A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase. Yonemoto IT; Clarkson BR; Smith HO; Weyman PD BMC Biochem; 2014 Jun; 15():10. PubMed ID: 24934472 [TBL] [Abstract][Full Text] [Related]
28. Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study. Long H; King PW; Chang CH J Phys Chem B; 2014 Jan; 118(4):890-900. PubMed ID: 24405487 [TBL] [Abstract][Full Text] [Related]
29. Probing the effects of one-electron reduction and protonation on the electronic properties of the Fe-S clusters in the active-ready form of [FeFe]-hydrogenases. A QM/MM investigation. Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L Chemphyschem; 2011 Dec; 12(17):3376-82. PubMed ID: 22084023 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the Bottlenecks and Pathways for Inhibitor Dissociation from [NiFe] Hydrogenase. Sohraby F; Nunes-Alves A J Chem Inf Model; 2024 May; 64(10):4193-4203. PubMed ID: 38728115 [TBL] [Abstract][Full Text] [Related]
31. Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases. Pandey K; Islam ST; Happe T; Armstrong FA Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3843-3848. PubMed ID: 28348243 [TBL] [Abstract][Full Text] [Related]
32. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related]
33. A QM/MM study of proton transport pathways in a [NiFe] hydrogenase. Fdez Galván I; Volbeda A; Fontecilla-Camps JC; Field MJ Proteins; 2008 Oct; 73(1):195-203. PubMed ID: 18412257 [TBL] [Abstract][Full Text] [Related]
34. Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. Mulder DW; Ratzloff MW; Bruschi M; Greco C; Koonce E; Peters JW; King PW J Am Chem Soc; 2014 Oct; 136(43):15394-402. PubMed ID: 25286239 [TBL] [Abstract][Full Text] [Related]
35. A third type of hydrogenase catalyzing H2 activation. Shima S; Thauer RK Chem Rec; 2007; 7(1):37-46. PubMed ID: 17304591 [TBL] [Abstract][Full Text] [Related]
36. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase. Sode O; Voth GA J Chem Phys; 2014 Dec; 141(22):22D527. PubMed ID: 25494798 [TBL] [Abstract][Full Text] [Related]
37. Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer. Gutiérrez-Sánchez C; Olea D; Marques M; Fernández VM; Pereira IA; Vélez M; De Lacey AL Langmuir; 2011 May; 27(10):6449-57. PubMed ID: 21491850 [TBL] [Abstract][Full Text] [Related]
38. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H; Lubitz W; Higuchi Y Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926 [TBL] [Abstract][Full Text] [Related]
39. Proton transport pathways in [NiFe]-hydrogenase. Sumner I; Voth GA J Phys Chem B; 2012 Mar; 116(9):2917-26. PubMed ID: 22309090 [TBL] [Abstract][Full Text] [Related]
40. Role of the HoxZ subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha immobilized on electrodes. Sezer M; Frielingsdorf S; Millo D; Heidary N; Utesch T; Mroginski MA; Friedrich B; Hildebrandt P; Zebger I; Weidinger IM J Phys Chem B; 2011 Sep; 115(34):10368-74. PubMed ID: 21761881 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]