These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 26218353)
1. Validation of a Skin-Lesion Image-Matching Algorithm Based on Computer Vision Technology. Chen RH; Snorrason M; Enger SM; Mostafa E; Ko JM; Aoki V; Bowling J Telemed J E Health; 2016 Jan; 22(1):45-50. PubMed ID: 26218353 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of teledermatology for pigmented neoplasms. Warshaw EM; Lederle FA; Grill JP; Gravely AA; Bangerter AK; Fortier LA; Bohjanen KA; Chen K; Lee PK; Rabinovitz HS; Johr RH; Kaye VN; Bowers S; Wenner R; Askari SK; Kedrowski DA; Nelson DB J Am Acad Dermatol; 2009 Nov; 61(5):753-65. PubMed ID: 19679375 [TBL] [Abstract][Full Text] [Related]
3. Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines. Jaworek-Korjakowska J Biomed Res Int; 2016; 2016():4381972. PubMed ID: 27382567 [TBL] [Abstract][Full Text] [Related]
4. Automated melanoma detection: multispectral imaging and neural network approach for classification. Tomatis S; Bono A; Bartoli C; Carrara M; Lualdi M; Tragni G; Marchesini R Med Phys; 2003 Feb; 30(2):212-21. PubMed ID: 12607839 [TBL] [Abstract][Full Text] [Related]
5. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Tomatis S; Carrara M; Bono A; Bartoli C; Lualdi M; Tragni G; Colombo A; Marchesini R Phys Med Biol; 2005 Apr; 50(8):1675-87. PubMed ID: 15815089 [TBL] [Abstract][Full Text] [Related]
6. Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy. Hoffmann K; Gambichler T; Rick A; Kreutz M; Anschuetz M; Grünendick T; Orlikov A; Gehlen S; Perotti R; Andreassi L; Newton Bishop J; Césarini JP; Fischer T; Frosch PJ; Lindskov R; Mackie R; Nashan D; Sommer A; Neumann M; Ortonne JP; Bahadoran P; Penas PF; Zoras U; Altmeyer P Br J Dermatol; 2003 Oct; 149(4):801-9. PubMed ID: 14616373 [TBL] [Abstract][Full Text] [Related]
7. Overview of advanced computer vision systems for skin lesions characterization. Maglogiannis I; Doukas CN IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):721-33. PubMed ID: 19304487 [TBL] [Abstract][Full Text] [Related]
8. The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Friedman RJ; Gutkowicz-Krusin D; Farber MJ; Warycha M; Schneider-Kels L; Papastathis N; Mihm MC; Googe P; King R; Prieto VG; Kopf AW; Polsky D; Rabinovitz H; Oliviero M; Cognetta A; Rigel DS; Marghoob A; Rivers J; Johr R; Grant-Kels JM; Tsao H Arch Dermatol; 2008 Apr; 144(4):476-82. PubMed ID: 18427041 [TBL] [Abstract][Full Text] [Related]
9. Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin. Iyatomi H; Oka H; Celebi ME; Ogawa K; Argenziano G; Soyer HP; Koga H; Saida T; Ohara K; Tanaka M J Invest Dermatol; 2008 Aug; 128(8):2049-54. PubMed ID: 18323788 [TBL] [Abstract][Full Text] [Related]
10. Utility of lesion diameter in the clinical diagnosis of cutaneous melanoma. Abbasi NR; Yancovitz M; Gutkowicz-Krusin D; Panageas KS; Mihm MC; Googe P; King R; Prieto V; Osman I; Friedman RJ; Rigel DS; Kopf AW; Polsky D Arch Dermatol; 2008 Apr; 144(4):469-74. PubMed ID: 18427040 [TBL] [Abstract][Full Text] [Related]
11. Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Blum A; Luedtke H; Ellwanger U; Schwabe R; Rassner G; Garbe C Br J Dermatol; 2004 Nov; 151(5):1029-38. PubMed ID: 15541081 [TBL] [Abstract][Full Text] [Related]
12. Classification of melanocytic lesions with color and texture analysis using digital image processing. Schindewolf T; Stolz W; Albert R; Abmayr W; Harms H Anal Quant Cytol Histol; 1993 Feb; 15(1):1-11. PubMed ID: 8471104 [TBL] [Abstract][Full Text] [Related]
13. Adaptable pattern recognition system for discriminating Melanocytic Nevi from Malignant Melanomas using plain photography images from different image databases. Kostopoulos SA; Asvestas PA; Kalatzis IK; Sakellaropoulos GC; Sakkis TH; Cavouras DA; Glotsos DT Int J Med Inform; 2017 Sep; 105():1-10. PubMed ID: 28750902 [TBL] [Abstract][Full Text] [Related]
15. mHealth App for Risk Assessment of Pigmented and Nonpigmented Skin Lesions-A Study on Sensitivity and Specificity in Detecting Malignancy. Thissen M; Udrea A; Hacking M; von Braunmuehl T; Ruzicka T Telemed J E Health; 2017 Dec; 23(12):948-954. PubMed ID: 28562195 [TBL] [Abstract][Full Text] [Related]
16. Unimaged Melanomas in Store-and-Forward Teledermatology. Gendreau JL; Gemelas J; Wang M; Capulong D; Lau C; Bratten DM; Dougall B; Markham C; Raugi GJ Telemed J E Health; 2017 Jun; 23(6):517-520. PubMed ID: 27929365 [TBL] [Abstract][Full Text] [Related]
17. Rethinking Skin Lesion Segmentation in a Convolutional Classifier. Burdick J; Marques O; Weinthal J; Furht B J Digit Imaging; 2018 Aug; 31(4):435-440. PubMed ID: 29047032 [TBL] [Abstract][Full Text] [Related]
18. Laypersons' sensitivity for melanoma identification is higher with dermoscopy images than clinical photographs. Luttrell MJ; McClenahan P; Hofmann-Wellenhof R; Fink-Puches R; Soyer HP Br J Dermatol; 2012 Nov; 167(5):1037-41. PubMed ID: 22762457 [TBL] [Abstract][Full Text] [Related]
19. Successful triage of patients referred to a skin lesion clinic using teledermoscopy (IMAGE IT trial). Tan E; Yung A; Jameson M; Oakley A; Rademaker M Br J Dermatol; 2010 Apr; 162(4):803-11. PubMed ID: 20222920 [TBL] [Abstract][Full Text] [Related]
20. Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Mohr P; Birgersson U; Berking C; Henderson C; Trefzer U; Kemeny L; Sunderkötter C; Dirschka T; Motley R; Frohm-Nilsson M; Reinhold U; Loquai C; Braun R; Nyberg F; Paoli J Skin Res Technol; 2013 May; 19(2):75-83. PubMed ID: 23350668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]