BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26218501)

  • 1. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.
    Liu X; Li D; Sun X; Li Z; Song H; Jiang H; Chen Y
    Sci Rep; 2015 Jul; 5():12555. PubMed ID: 26218501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency green light emission from InGaN/GaN using localized surface plasmon resonance tuned by combination of Ag nanoparticles and dielectric thin film.
    Kamei Y; Kaito S; Matsuyama T; Wada K; Funato M; Kawakami Y; Okamoto K
    Opt Express; 2024 Jun; 32(12):21389-21399. PubMed ID: 38859493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon resonances of GZO core-Ag shell nanospheres, nanorods, and nanodisks for biosensing and biomedical applications in near-infrared biological windows I and II.
    Moustafa S; Almarashi JQM; Zayed MK; Almokhtar M; Rashad M; Fares H
    Phys Chem Chem Phys; 2024 Jun; 26(25):17817-17829. PubMed ID: 38884203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.
    Awazu K; Fujimaki M; Rockstuhl C; Tominaga J; Murakami H; Ohki Y; Yoshida N; Watanabe T
    J Am Chem Soc; 2008 Feb; 130(5):1676-80. PubMed ID: 18189392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity.
    Miyazaki HT; Kurokawa Y
    Phys Rev Lett; 2006 Mar; 96(9):097401. PubMed ID: 16606313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Ag@SiO
    He Z; Zhang C; Meng R; Luo X; Chen M; Lu H; Yang Y
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33261123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipole plasmon resonances of submicron silver particles.
    Kumbhar AS; Kinnan MK; Chumanov G
    J Am Chem Soc; 2005 Sep; 127(36):12444-5. PubMed ID: 16144364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance.
    Alvarez-Puebla RA; Ross DJ; Nazri GA; Aroca RF
    Langmuir; 2005 Nov; 21(23):10504-8. PubMed ID: 16262313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Localized Surface Plasmon Coupling with Many Radiators.
    Chen Z; Deng C; Xi X; Chen Y; Feng Y; Jiang S; Chen W; Kang X; Wang Q; Zhang G; Shen B
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A label-free visual immunoassay on solid support with silver nanoparticles as plasmon resonance scattering indicator.
    Ling J; Li YF; Huang CZ
    Anal Biochem; 2008 Dec; 383(2):168-73. PubMed ID: 18793606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and surface plasmon resonances of silver nanocomposite layer-by-layer films.
    Ovchinnikov V; Shevchenko A
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3872-6. PubMed ID: 19504934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized surface plasmon resonance of single silver nanoparticles studied by dark-field optical microscopy and spectroscopy.
    Cao W; Huang T; Xu XH; Elsayed-Ali HE
    J Appl Phys; 2011 Feb; 109(3):34310. PubMed ID: 21383872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles.
    Raza S; Kadkhodazadeh S; Christensen T; Di Vece M; Wubs M; Mortensen NA; Stenger N
    Nat Commun; 2015 Nov; 6():8788. PubMed ID: 26537568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Quantitative Approach to Characterize the Surface Modification on Nanoparticles Based on Localized Dielectric Environments.
    Mochizuki T; Sampei S; Suga K; Watanabe K; Welling TAJ; Nagao D
    Anal Chem; 2024 Feb; 96(8):3284-3290. PubMed ID: 38355104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications.
    Wang W; Asher SA
    J Am Chem Soc; 2001 Dec; 123(50):12528-35. PubMed ID: 11741416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic Fano interference of localized plasmons in Pd nanoparticles.
    Pakizeh T; Langhammer C; Zorić I; Apell P; Käll M
    Nano Lett; 2009 Feb; 9(2):882-6. PubMed ID: 19175307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly.
    Jiang C; Markutsya S; Tsukruk VV
    Langmuir; 2004 Feb; 20(3):882-90. PubMed ID: 15773119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.