BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 26218538)

  • 1. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.
    Lee OK; Oh YK; Lee EY
    Bioresour Technol; 2015 Nov; 196():22-7. PubMed ID: 26218538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta.
    Lee OK; Kim AL; Seong DH; Lee CG; Jung YT; Lee JW; Lee EY
    Bioresour Technol; 2013 Mar; 132():197-201. PubMed ID: 23411448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production.
    Kataria R; Ghosh S
    Bioresour Technol; 2011 Nov; 102(21):9970-5. PubMed ID: 21907576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production.
    Cheng YS; Zheng Y; Labavitch JM; VanderGheynst JS
    Bioresour Technol; 2013 Jun; 137():326-31. PubMed ID: 23597760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.
    Pancha I; Chokshi K; Maurya R; Bhattacharya S; Bachani P; Mishra S
    Bioresour Technol; 2016 Mar; 204():9-16. PubMed ID: 26771924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Chemical Pre-treatments on Bioethanol Production from Chlorella minutissima.
    Şerbetçioğlu Sert B; İnan B; Özçimen D
    Acta Chim Slov; 2018 Mar; 65(1):160-165. PubMed ID: 29562109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars.
    Zhou N; Zhang Y; Gong X; Wang Q; Ma Y
    Bioresour Technol; 2012 Aug; 118():512-7. PubMed ID: 22717571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modelling of bioethanol production from algal starch hydrolysate by Saccharomyces cerevisiae.
    Singh S; Chakravarty I; Kundu S
    Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):83-87. PubMed ID: 28968215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.
    Wu FC; Wu JY; Liao YJ; Wang MY; Shih IL
    Bioresour Technol; 2014 Mar; 156():123-31. PubMed ID: 24491295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2.
    Zhou N; Zhang Y; Wu X; Gong X; Wang Q
    Bioresour Technol; 2011 Nov; 102(21):10158-61. PubMed ID: 21906940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp.
    Wang H; Ji C; Bi S; Zhou P; Chen L; Liu T
    Bioresour Technol; 2014 Nov; 172():169-173. PubMed ID: 25260180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.
    Hafid HS; Nor 'Aini AR; Mokhtar MN; Talib AT; Baharuddin AS; Umi Kalsom MS
    Waste Manag; 2017 Sep; 67():95-105. PubMed ID: 28527863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp.
    Lee CG; Kang DH; Lee DB; Lee HY
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1143-58. PubMed ID: 23793826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneously concentrating and pretreating of microalgae Chlorella spp. by three-phase partitioning.
    Li Z; Jiang F; Li Y; Zhang X; Tan T
    Bioresour Technol; 2013 Dec; 149():286-91. PubMed ID: 24121370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.
    Soliman RM; Younis SA; El-Gendy NS; Mostafa SSM; El-Temtamy SA; Hashim AI
    J Appl Microbiol; 2018 Aug; 125(2):422-440. PubMed ID: 29675837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa.
    Shukla R; Kumar M; Chakraborty S; Gupta R; Kumar S; Sahoo D; Kuhad RC
    Bioresour Technol; 2016 Nov; 220():584-589. PubMed ID: 27619709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.
    Li Y; Cui J; Zhang G; Liu Z; Guan H; Hwang H; Aker WG; Wang P
    Bioresour Technol; 2016 Aug; 214():144-149. PubMed ID: 27132221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.