These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 26218541)
1. In vitro evaluation of suspoemulsions for in situ-forming polymeric microspheres and controlled release of progesterone. Turino LN; Mariano RN; Mengatto LN; Luna JA J Microencapsul; 2015; 32(6):538-46. PubMed ID: 26218541 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel formulation containing poly(d,l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. Duvvuri S; Janoria KG; Mitra AK J Control Release; 2005 Nov; 108(2-3):282-93. PubMed ID: 16229919 [TBL] [Abstract][Full Text] [Related]
3. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique. Paillard-Giteau A; Tran VT; Thomas O; Garric X; Coudane J; Marchal S; Chourpa I; BenoƮt JP; Montero-Menei CN; Venier-Julienne MC Eur J Pharm Biopharm; 2010 Jun; 75(2):128-36. PubMed ID: 20226857 [TBL] [Abstract][Full Text] [Related]
4. Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d,L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. Duvvuri S; Janoria KG; Pal D; Mitra AK J Ocul Pharmacol Ther; 2007 Jun; 23(3):264-74. PubMed ID: 17593010 [TBL] [Abstract][Full Text] [Related]
5. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties. Morlock M; Kissel T; Li YX; Koll H; Winter G J Control Release; 1998 Dec; 56(1-3):105-15. PubMed ID: 9801434 [TBL] [Abstract][Full Text] [Related]
6. Naltrexone-loaded poly[La-(Glc-Leu)] polymeric microspheres for the treatment of alcohol dependence: in vitro characterization and in vivo biocompatibility assessment. Pagar KP; Vavia PR Pharm Dev Technol; 2014 Jun; 19(4):385-94. PubMed ID: 23590187 [TBL] [Abstract][Full Text] [Related]
7. Pluronic F127 gel effectively controls the burst release of drug from PLGA microspheres. Wang Y; Gao JQ; Chen HL; Zheng CH; Liang WQ Pharmazie; 2006 Apr; 61(4):367-8. PubMed ID: 16649559 [TBL] [Abstract][Full Text] [Related]
8. Iodo-2'-deoxyuridine (IUdR) and 125IUdR loaded biodegradable microspheres for controlled delivery to the brain. Reza MS; Whateley TL J Microencapsul; 1998; 15(6):789-801. PubMed ID: 9818956 [TBL] [Abstract][Full Text] [Related]
10. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. Busatto C; Pesoa J; Helbling I; Luna J; Estenoz D Int J Pharm; 2018 Jan; 536(1):360-369. PubMed ID: 29217474 [TBL] [Abstract][Full Text] [Related]
11. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory. Berchane NS; Carson KH; Rice-Ficht AC; Andrews MJ Int J Pharm; 2007 Jun; 337(1-2):118-26. PubMed ID: 17289316 [TBL] [Abstract][Full Text] [Related]
12. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Doan TV; Couet W; Olivier JC Int J Pharm; 2011 Jul; 414(1-2):112-7. PubMed ID: 21596123 [TBL] [Abstract][Full Text] [Related]
13. Preparation of preformed porous PLGA microparticles and antisense oligonucleotides loading. Ahmed AR; Bodmeier R Eur J Pharm Biopharm; 2009 Feb; 71(2):264-70. PubMed ID: 18840521 [TBL] [Abstract][Full Text] [Related]
14. Lappaconitine-loaded microspheres for parenteral sustained release: effects of formulation variables and in vitro characterization. Xu H; Zhong H; Liu M; Xu C; Gao Y Pharmazie; 2011 Sep; 66(9):654-61. PubMed ID: 22026119 [TBL] [Abstract][Full Text] [Related]
15. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Kranz H; Bodmeier R Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049 [TBL] [Abstract][Full Text] [Related]
16. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications. Chang DP; Garripelli VK; Rea J; Kelley R; Rajagopal K J Pharm Sci; 2015 Oct; 104(10):3404-17. PubMed ID: 26099467 [TBL] [Abstract][Full Text] [Related]
17. Rupture and drug release characteristics of multi-reservoir type microspheres with poly(dl-lactide-co-glycolide) and poly(dl-lactide). Matsumoto A; Matsukawa Y; Horikiri Y; Suzuki T Int J Pharm; 2006 Dec; 327(1-2):110-6. PubMed ID: 16971073 [TBL] [Abstract][Full Text] [Related]
18. A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles. Wei Y; Wang Y; Kang A; Wang W; Ho SV; Gao J; Ma G; Su Z Mol Pharm; 2012 Jul; 9(7):2039-48. PubMed ID: 22663348 [TBL] [Abstract][Full Text] [Related]
19. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. Parent M; Nouvel C; Koerber M; Sapin A; Maincent P; Boudier A J Control Release; 2013 Nov; 172(1):292-304. PubMed ID: 24001947 [TBL] [Abstract][Full Text] [Related]
20. PLGA-based drug delivery systems: importance of the type of drug and device geometry. Klose D; Siepmann F; Elkharraz K; Siepmann J Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]