BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26218872)

  • 1. Spatial Variation of Phosphorous Retention Capacity in Subsurface Flow Constructed Wetlands: Effect of Wetland Type and Inflow Loading.
    Yu G; Tan M; Chong Y; Long X
    PLoS One; 2015; 10(7):e0134010. PubMed ID: 26218872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Difference of P content in different area substrate of constructed wetland].
    Cao XY; Chong YX; Yu GW; Zhong HT
    Huan Jing Ke Xue; 2012 Nov; 33(11):4033-9. PubMed ID: 23323442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on phosphorus removal capability of constructed wetlands filled with broken bricks].
    Wang Z; Liu CX; Li PY; Dong J; Liu L; Zhu GF
    Huan Jing Ke Xue; 2012 Dec; 33(12):4373-9. PubMed ID: 23379167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013).
    Zhang DQ; Jinadasa KB; Gersberg RM; Liu Y; Tan SK; Ng WJ
    J Environ Sci (China); 2015 Apr; 30():30-46. PubMed ID: 25872707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root vertical spatial stress: A method for enhancing rhizosphere effect of plants in subsurface flow constructed wetland.
    Zhang J; Shao Z; Li B; Bai G; Yang L; Chi Y; Wang M; Ren Y
    Environ Res; 2023 Aug; 231(Pt 1):116083. PubMed ID: 37164283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of long-term phosphorus uptake by
    Carrillo V; Collins C; Brisson J; Vidal G
    Int J Phytoremediation; 2022; 24(6):610-621. PubMed ID: 34382468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands.
    Mander U; Lõhmus K; Teiter S; Mauring T; Nurk K; Augustin J
    Sci Total Environ; 2008 Oct; 404(2-3):343-53. PubMed ID: 18486194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical subsurface flow constructed wetlands for the removal of petroleum contaminants from secondary refinery effluent at the Kaduna refining plant (Kaduna, Nigeria).
    Mustapha HI; van Bruggen HJJA; Lens PNL
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30451-30462. PubMed ID: 30168108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of water contaminated with Hg using horizontal subsurface constructed wetlands.
    Singh RP; Wu J; Fu D
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9697-9706. PubMed ID: 30734251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the substrate depth on purification performance of a hybrid constructed wetland treating domestic sewage.
    Ren YX; Zhang H; Wang C; Yang YZ; Qin Z; Ma Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(7):777-82. PubMed ID: 21644156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emission of greenhouse gases from constructed wetlands for wastewater treatment and from riparian buffer zones.
    Mander U; Teiter S; Augustin J
    Water Sci Technol; 2005; 52(10-11):167-76. PubMed ID: 16459789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment.
    Ge Y; Wang X; Zheng Y; Dzakpasu M; Zhao Y; Xiong J
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):12982-91. PubMed ID: 25916476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system.
    Malyan SK; Yadav S; Sonkar V; Goyal VC; Singh O; Singh R
    Water Environ Res; 2021 Oct; 93(10):1882-1909. PubMed ID: 34129692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal and spatial variations of contaminant removal, enzyme activities, and microbial community structure in a pilot horizontal subsurface flow constructed wetland purifying industrial runoff.
    Yi XH; Jing DD; Wan J; Ma Y; Wang Y
    Environ Sci Pollut Res Int; 2016 May; 23(9):8565-76. PubMed ID: 26797946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Ageratum conyzoides in field scale constructed wetlands (CWs) for domestic wastewater treatment.
    Tilak AS; Wani SP; Datta A; Patil MD; Kaushal M; Reddy KR
    Water Sci Technol; 2017 May; 75(10):2268-2280. PubMed ID: 28541934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands.
    Forbes MG; Dickson KL; Saleh F; Waller WT; Doyle RD; Hudak P
    Environ Sci Technol; 2005 Jun; 39(12):4621-7. PubMed ID: 16047801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an innovative front aeration and internal recirculation strategy to improve the removal of pollutants in subsurface flow constructed wetlands.
    Lin CJ; Chyan JM; Zhuang WX; Vega FA; Mendoza RMO; Senoro DB; Shiu RF; Liao CH; Huang DJ
    J Environ Manage; 2020 Feb; 256():109873. PubMed ID: 31822455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An innovative reuse of bottom ash from municipal solid waste incinerators as substrates of constructed wetlands.
    Chyan JM; Lin CJ; Yu MJ; Shiu RF; Huang DJ; Lin CS; Senoro DB
    Chemosphere; 2022 Nov; 307(Pt 2):135896. PubMed ID: 35961454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.