These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26218927)

  • 1. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system.
    Tang X; Liu F
    Bioengineered; 2015; 6(5):294-6. PubMed ID: 26218927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonia quantitative analysis model based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model.
    Ma R
    Bioengineered; 2015; 6(3):149-52. PubMed ID: 25975362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model.
    Jingyi Z
    Bioengineered; 2015; 6(5):283-7. PubMed ID: 26198910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas sensing properties of branched carbon nanotube-based structures using a novel low voltage emission.
    Darbari S; Azimi S; Abdi Y; Mohajerzadeh S
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8666-70. PubMed ID: 23421262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Review of Gas Sensors Using Carbon Materials.
    Kim MI; Lee YS
    J Nanosci Nanotechnol; 2016 May; 16(5):4310-9. PubMed ID: 27483751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and quantification of mixed air pollutants based on homotopy method for gas sensor array.
    Yang Y; Mason AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4221-4. PubMed ID: 23366859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative trace analysis of benzene using an array of plasma-treated metal-decorated carbon nanotubes and fuzzy adaptive resonant theory techniques.
    Leghrib R; Llobet E
    Anal Chim Acta; 2011 Dec; 708(1-2):19-27. PubMed ID: 22093340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A carbon nanotube gas sensor fabricated by dielectrophoresis and its application for NH3 detection.
    Wang R; Li H; Pan M; Chen D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6046-9. PubMed ID: 19964889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a benzene vapour sensor utilizing chemiluminescence on Y2O3.
    Rao Z; Liu L; Xie J; Zeng Y
    Luminescence; 2008; 23(3):163-8. PubMed ID: 18452133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low power consumption and high sensitivity carbon monoxide gas sensor using indium oxide nanowire.
    Moon SE; Lee HY; Park J; Lee JW; Choi NJ; Park SJ; Kwak JH; Park KH; Kim J; Cho GH; Lee TH; Maeng S; Udrea F; Milne WI
    J Nanosci Nanotechnol; 2010 May; 10(5):3189-92. PubMed ID: 20358919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid optical-electrochemical electronic nose system based on Zn-porphyrin and multi-walled carbon nanotube composite.
    Kladsomboon S; Lutz M; Pogfay T; Puntheeranurak T; Kerdcharoen T
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5240-4. PubMed ID: 22966552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation.
    Singh N; Yan C; Lee PS; Comini E
    Nanoscale; 2011 Apr; 3(4):1760-5. PubMed ID: 21347489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes.
    Zhao X; Lu X; Tze WT; Wang P
    Biosens Bioelectron; 2010 Jun; 25(10):2343-50. PubMed ID: 20418089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine.
    Xing X; Liu S; Yu J; Lian W; Huang J
    Biosens Bioelectron; 2012 Jan; 31(1):277-83. PubMed ID: 22074810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes.
    Qian T; Yu C; Zhou X; Ma P; Wu S; Xu L; Shen J
    Biosens Bioelectron; 2014 Aug; 58():237-41. PubMed ID: 24657643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive room temperature carbon monoxide detection using SnO2 nanoparticle-decorated semiconducting single-walled carbon nanotubes.
    Zhang Y; Cui S; Chang J; Ocola LE; Chen J
    Nanotechnology; 2013 Jan; 24(2):025503. PubMed ID: 23237914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol.
    Baytak AK; Duzmen S; Teker T; Aslanoglu M
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():164-70. PubMed ID: 26354251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a chemiresistive sensor-integrated electronic nose: a review.
    Chiu SW; Tang KT
    Sensors (Basel); 2013 Oct; 13(10):14214-47. PubMed ID: 24152879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical imprinted sensor for determination of oleanic acid based on poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles.
    Hu Y; Zhang Z; Li J; Zhang H; Luo L; Yao S
    Biosens Bioelectron; 2012 Jan; 31(1):190-6. PubMed ID: 22099956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.