BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26219079)

  • 1. Learning the Structure of Biomedical Relationships from Unstructured Text.
    Percha B; Altman RB
    PLoS Comput Biol; 2015 Jul; 11(7):e1004216. PubMed ID: 26219079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global network of biomedical relationships derived from text.
    Percha B; Altman RB
    Bioinformatics; 2018 Aug; 34(15):2614-2624. PubMed ID: 29490008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting Dependence Relations from Unstructured Medical Text.
    Jochim C; Lassoued Y; Sacaleanu B; Deleris LA
    Stud Health Technol Inform; 2015; 216():1032. PubMed ID: 26262332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knowledge based word-concept model estimation and refinement for biomedical text mining.
    Jimeno Yepes A; Berlanga R
    J Biomed Inform; 2015 Feb; 53():300-7. PubMed ID: 25510606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring the semantic relationships of words within an ontology using random indexing: applications to pharmacogenomics.
    Percha B; Altman RB
    AMIA Annu Symp Proc; 2013; 2013():1123-32. PubMed ID: 24551397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the prediction of pharmacogenes using text-derived drug-gene relationships.
    Garten Y; Tatonetti NP; Altman RB
    Pac Symp Biocomput; 2010; ():305-14. PubMed ID: 19908383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CIBS: A biomedical text summarizer using topic-based sentence clustering.
    Moradi M
    J Biomed Inform; 2018 Dec; 88():53-61. PubMed ID: 30445218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
    Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K
    J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A knowledge-driven conditional approach to extract pharmacogenomics specific drug-gene relationships from free text.
    Xu R; Wang Q
    J Biomed Inform; 2012 Oct; 45(5):827-34. PubMed ID: 22561026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. deepBioWSD: effective deep neural word sense disambiguation of biomedical text data.
    Pesaranghader A; Matwin S; Sokolova M; Pesaranghader A
    J Am Med Inform Assoc; 2019 May; 26(5):438-446. PubMed ID: 30811548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BMExpert: Mining MEDLINE for Finding Experts in Biomedical Domains Based on Language Model.
    Wang B; Chen X; Mamitsuka H; Zhu S
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1286-94. PubMed ID: 26671801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. METSP: a maximum-entropy classifier based text mining tool for transporter-substrate identification with semistructured text.
    Zhao M; Chen Y; Qu D; Qu H
    Biomed Res Int; 2015; 2015():254838. PubMed ID: 26495291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research.
    Bravo À; Piñero J; Queralt-Rosinach N; Rautschka M; Furlong LI
    BMC Bioinformatics; 2015 Feb; 16():55. PubMed ID: 25886734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using PharmGKB to train text mining approaches for identifying potential gene targets for pharmacogenomic studies.
    Pakhomov S; McInnes BT; Lamba J; Liu Y; Melton GB; Ghodke Y; Bhise N; Lamba V; Birnbaum AK
    J Biomed Inform; 2012 Oct; 45(5):862-9. PubMed ID: 22564551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating word representation features in biomedical named entity recognition tasks.
    Tang B; Cao H; Wang X; Chen Q; Xu H
    Biomed Res Int; 2014; 2014():240403. PubMed ID: 24729964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-supervised learning of causal relations in biomedical scientific discourse.
    Mihăilă C; Ananiadou S
    Biomed Eng Online; 2014; 13 Suppl 2(Suppl 2):S1. PubMed ID: 25559746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New challenges for text mining: mapping between text and manually curated pathways.
    Oda K; Kim JD; Ohta T; Okanohara D; Matsuzaki T; Tateisi Y; Tsujii J
    BMC Bioinformatics; 2008 Apr; 9 Suppl 3(Suppl 3):S5. PubMed ID: 18426550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and explanation of drug-drug interactions via text mining.
    Percha B; Garten Y; Altman RB
    Pac Symp Biocomput; 2012; ():410-21. PubMed ID: 22174296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical sequence labeling for extracting BEL statements from biomedical literature.
    Liu S; Shao Y; Qian L; Zhou G
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):63. PubMed ID: 30961584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Text Mining and Machine Learning Protocol for Extracting Human-Related Protein Phosphorylation Information from PubMed.
    Arumugam K; Shanker RR
    Methods Mol Biol; 2022; 2496():159-177. PubMed ID: 35713864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.