These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 26219085)
1. Engineering Transition-Metal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO2 to Methane. Wannakao S; Artrith N; Limtrakul J; Kolpak AM ChemSusChem; 2015 Aug; 8(16):2745-51. PubMed ID: 26219085 [TBL] [Abstract][Full Text] [Related]
2. Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons-A Review. Czaplicka N; Rogala A; Wysocka I Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830220 [TBL] [Abstract][Full Text] [Related]
3. Terpyridine complexes of first row transition metals and electrochemical reduction of CO₂ to CO. Elgrishi N; Chambers MB; Artero V; Fontecave M Phys Chem Chem Phys; 2014 Jul; 16(27):13635-44. PubMed ID: 24651983 [TBL] [Abstract][Full Text] [Related]
4. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting. Garcia-Esparza AT; Cha D; Ou Y; Kubota J; Domen K; Takanabe K ChemSusChem; 2013 Jan; 6(1):168-81. PubMed ID: 23255471 [TBL] [Abstract][Full Text] [Related]
5. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4. Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880 [TBL] [Abstract][Full Text] [Related]
6. Descriptors and Thermodynamic Limitations of Electrocatalytic Carbon Dioxide Reduction on Rutile Oxide Surfaces. Bhowmik A; Vegge T; Hansen HA ChemSusChem; 2016 Nov; 9(22):3230-3243. PubMed ID: 27781396 [TBL] [Abstract][Full Text] [Related]
7. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. Zheng MY; Wang AQ; Ji N; Pang JF; Wang XD; Zhang T ChemSusChem; 2010; 3(1):63-6. PubMed ID: 19998362 [No Abstract] [Full Text] [Related]
8. High-yield synthesis of ultrathin and uniform Bi₂WO₆ square nanoplates benefitting from photocatalytic reduction of CO₂ into renewable hydrocarbon fuel under visible light. Zhou Y; Tian Z; Zhao Z; Liu Q; Kou J; Chen X; Gao J; Yan S; Zou Z ACS Appl Mater Interfaces; 2011 Sep; 3(9):3594-601. PubMed ID: 21815668 [TBL] [Abstract][Full Text] [Related]
9. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors. Vojvodic A; Ruberto C; Lundqvist BI J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200 [TBL] [Abstract][Full Text] [Related]
10. Tungsten carbide-nitride on graphene nanoplatelets as a durable hydrogen evolution electrocatalyst. Chen WF; Schneider JM; Sasaki K; Wang CH; Schneider J; Iyer S; Iyer S; Zhu Y; Muckerman JT; Fujita E ChemSusChem; 2014 Sep; 7(9):2414-8. PubMed ID: 25059477 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic Insights into the Unique Role of Copper in CO Liu SP; Zhao M; Gao W; Jiang Q ChemSusChem; 2017 Jan; 10(2):387-393. PubMed ID: 27943655 [TBL] [Abstract][Full Text] [Related]
12. Transition metal-depleted graphenes for electrochemical applications via reduction of CO₂ by lithium. Poh HL; Sofer Z; Luxa J; Pumera M Small; 2014 Apr; 10(8):1529-35. PubMed ID: 24344051 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature activation of methane: it also works without a transition metal. Schröder D; Roithová J Angew Chem Int Ed Engl; 2006 Aug; 45(34):5705-8. PubMed ID: 16858710 [No Abstract] [Full Text] [Related]
14. Synthesis and Performance Characterizations of Transition Metal Single Atom Catalyst for Electrochemical CO2 Reduction. Jiang K; Chen G; Wang H J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708540 [TBL] [Abstract][Full Text] [Related]
15. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. Esposito DV; Hunt ST; Kimmel YC; Chen JG J Am Chem Soc; 2012 Feb; 134(6):3025-33. PubMed ID: 22280370 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2. Wang K; Li X; Ji S; Huang B; Li C ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151 [TBL] [Abstract][Full Text] [Related]
17. Polyoxometalate-Based Catalysts for CO Cao Y; Chen Q; Shen C; He L Molecules; 2019 May; 24(11):. PubMed ID: 31151282 [TBL] [Abstract][Full Text] [Related]
18. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854 [TBL] [Abstract][Full Text] [Related]
19. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Kuhl KP; Hatsukade T; Cave ER; Abram DN; Kibsgaard J; Jaramillo TF J Am Chem Soc; 2014 Oct; 136(40):14107-13. PubMed ID: 25259478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]