These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26219085)

  • 21. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution.
    Li Q; Cui W; Tian J; Xing Z; Liu Q; Xing W; Asiri AM; Sun X
    ChemSusChem; 2015 Aug; 8(15):2487-91. PubMed ID: 26121606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 1. A density functional study of intermediates.
    Nielsen IM; Leung K
    J Phys Chem A; 2010 Sep; 114(37):10166-73. PubMed ID: 20687540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites.
    Wang B; Tian C; Wang L; Wang R; Fu H
    Nanotechnology; 2010 Jan; 21(2):025606. PubMed ID: 19955617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules.
    Huang YB; Chen MY; Yan L; Guo QX; Fu Y
    ChemSusChem; 2014 Apr; 7(4):1068-72. PubMed ID: 24574062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CH4 combustion cycles at Pd/Al2O3--important role of support and oxygen access.
    Czekaj I; Kacprzak KA; Mantzaras J
    Phys Chem Chem Phys; 2013 Jul; 15(27):11368-74. PubMed ID: 23736223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction.
    Esmaeilirad M; Baskin A; Kondori A; Sanz-Matias A; Qian J; Song B; Tamadoni Saray M; Kucuk K; Belmonte AR; Delgado PNM; Park J; Azari R; Segre CU; Shahbazian-Yassar R; Prendergast D; Asadi M
    Nat Commun; 2021 Aug; 12(1):5067. PubMed ID: 34417447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys.
    Alexander AM; Hargreaves JS
    Chem Soc Rev; 2010 Nov; 39(11):4388-401. PubMed ID: 20526487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic Analysis of Electrochemical CO₂ Reduction with Various Reaction Parameters using Combinatorial Reactors.
    Hashiba H; Yotsuhashi S; Deguchi M; Yamada Y
    ACS Comb Sci; 2016 Apr; 18(4):203-8. PubMed ID: 27003626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations.
    Montoya JH; Tsai C; Vojvodic A; Nørskov JK
    ChemSusChem; 2015 Jul; 8(13):2180-6. PubMed ID: 26097211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trends in bulk electron-structural features of rocksalt early transition-metal carbides.
    Vojvodic A; Ruberto C
    J Phys Condens Matter; 2010 Sep; 22(37):375501. PubMed ID: 21403197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide.
    Lee S; Lee J
    ChemSusChem; 2016 Feb; 9(4):333-44. PubMed ID: 26610065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational Study of Methane C-H Activation by Main Group and Mixed Main Group-Transition Metal Complexes.
    Carter CC; Cundari TR
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule magnet based on a C-type polyoxomolybdate with an S = 11 ground state: [Fe5CoMo22As2O85(H2O)]15-.
    Zhen Y; Liu B; Li L; Wang D; Ma Y; Hu H; Gao S; Xue G
    Dalton Trans; 2013 Jan; 42(1):58-62. PubMed ID: 23135131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding of Electrochemical Mechanisms for CO
    Li N; Chen X; Ong WJ; MacFarlane DR; Zhao X; Cheetham AK; Sun C
    ACS Nano; 2017 Nov; 11(11):10825-10833. PubMed ID: 28892617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of carbon on the stability and chemical performance of transition metal carbides: a density functional study.
    Liu P; Rodriguez JA
    J Chem Phys; 2004 Mar; 120(11):5414-23. PubMed ID: 15267415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.