These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26219607)

  • 1. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.
    Psikuta A; Kuklane K; Bogdan A; Havenith G; Annaheim S; Rossi RM
    Int J Biometeorol; 2016 Mar; 60(3):435-46. PubMed ID: 26219607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing.
    Psikuta A; Koelblen B; Mert E; Fontana P; Annaheim S
    Ind Health; 2017 Dec; 55(6):500-512. PubMed ID: 28966294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of thermal manikins in environmental ergonomics.
    Wyon DP
    Scand J Work Environ Health; 1989; 15 Suppl 1():84-94. PubMed ID: 2609125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-sector thermo-physiological head simulator for headgear research.
    Martinez N; Psikuta A; Corberán JM; Rossi RM; Annaheim S
    Int J Biometeorol; 2017 Feb; 61(2):273-285. PubMed ID: 27613651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.
    Huang J
    Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fabric skins for the simulation of sweating on thermal manikins.
    Koelblen B; Psikuta A; Bogdan A; Annaheim S; Rossi RM
    Int J Biometeorol; 2017 Sep; 61(9):1519-1529. PubMed ID: 28303342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response.
    Psikuta A; Mert E; Annaheim S; Rossi RM
    Int J Biometeorol; 2018 Jul; 62(7):1121-1134. PubMed ID: 29478101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review on modeling heat transfer and thermoregulatory responses in human body.
    Fu M; Weng W; Chen W; Luo N
    J Therm Biol; 2016 Dec; 62(Pt B):189-200. PubMed ID: 27888933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a two-layer movable sweating thermal manikin.
    Tamura T
    Ind Health; 2006 Jul; 44(3):441-4. PubMed ID: 16922188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Physiologic adaptation of the thermal manikin].
    Bischof W; Bánhidi L
    Z Gesamte Hyg; 1989 Dec; 35(12):723-5. PubMed ID: 2631467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview.
    Wang F
    Ind Health; 2017 Dec; 55(6):473-484. PubMed ID: 28566566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-sector thermophysiological human simulator.
    Psikuta A; Richards M; Fiala D
    Physiol Meas; 2008 Feb; 29(2):181-92. PubMed ID: 18256450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting human thermal comfort in a transient nonuniform thermal environment.
    Rugh JP; Farrington RB; Bharathan D; Vlahinos A; Burke R; Huizenga C; Zhang H
    Eur J Appl Physiol; 2004 Sep; 92(6):721-7. PubMed ID: 15221399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of water leakage on the results obtained from human and thermal manikin tests of immersion protective clothing.
    Tipton MJ; Balmi PJ
    Eur J Appl Physiol Occup Physiol; 1996; 72(5-6):394-400. PubMed ID: 8925808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.
    Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U
    Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions.
    Veselá S; Psikuta A; Frijns AJH
    Int J Biometeorol; 2018 Dec; 62(12):2215-2229. PubMed ID: 30374599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the human body's microclimate using a thermal manikin.
    Voelker C; Maempel S; Kornadt O
    Indoor Air; 2014 Dec; 24(6):567-79. PubMed ID: 24666331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent trends in clothing physiology.
    Holmér I
    Scand J Work Environ Health; 1989; 15 Suppl 1():58-65. PubMed ID: 2692141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manikin measurements versus wear trials of cold protective clothing (Subzero project).
    Meinander H; Anttonen H; Bartels V; Holmér I; Reinertsen RE; Soltynski K; Varieras S
    Eur J Appl Physiol; 2004 Sep; 92(6):619-21. PubMed ID: 15138839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical study of the heat loss attenuation by clothing on thermal manikins under radiative heat loads.
    Den Hartog EA; Havenith G
    Int J Occup Saf Ergon; 2010; 16(2):245-61. PubMed ID: 20540843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.