These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26219712)

  • 1. TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells.
    Ermonval M; Baychelier F; Fonta C
    Subcell Biochem; 2015; 76():167-83. PubMed ID: 26219712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.
    Ermonval M; Baudry A; Baychelier F; Pradines E; Pietri M; Oda K; Schneider B; Mouillet-Richard S; Launay JM; Kellermann O
    PLoS One; 2009 Aug; 4(8):e6497. PubMed ID: 19652718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid rafts in neuronal signaling and function.
    Tsui-Pierchala BA; Encinas M; Milbrandt J; Johnson EM
    Trends Neurosci; 2002 Aug; 25(8):412-7. PubMed ID: 12127758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal Transduction Pathways of TNAP: Molecular Network Analyses.
    Négyessy L; Györffy B; Hanics J; Bányai M; Fonta C; Bazsó F
    Subcell Biochem; 2015; 76():185-205. PubMed ID: 26219713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical Analysis of Lipid Rafts to Study Pathogenic Mechanisms of Neural Diseases.
    Bongarzone ER; Givogri MI
    Methods Mol Biol; 2021; 2187():37-46. PubMed ID: 32770500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent localization of GPI-anchored intestinal alkaline phosphatase in model rafts.
    Giocondi MC; Besson F; Dosset P; Milhiet PE; Le Grimellec C
    J Mol Recognit; 2007; 20(6):531-7. PubMed ID: 17703464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for segregation of heterologous GPI-anchored proteins into separate lipid rafts within the plasma membrane.
    Wang J; Gunning W; Kelley KM; Ratnam M
    J Membr Biol; 2002 Sep; 189(1):35-43. PubMed ID: 12202950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid Microdomains in Synapse Formation.
    Madwar C; Gopalakrishnan G; Lennox RB
    ACS Chem Neurosci; 2016 Jun; 7(6):833-41. PubMed ID: 27070205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of tissue non-specific alkaline phosphatase in maintenance of structure of murine colon and stomach.
    Shao JS; Engle M; Xie Q; Schmidt RE; Narisawa S; Millan JL; Alpers DH
    Microsc Res Tech; 2000 Oct; 51(2):121-8. PubMed ID: 11054862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What Can We Learn About the Neural Functions of TNAP from Studies on Other Organs and Tissues?
    Millán JL
    Subcell Biochem; 2015; 76():155-66. PubMed ID: 26219711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders.
    Diaz-Hernandez M; Hernandez F; Miras-Portugal MT; Avila J
    Subcell Biochem; 2015; 76():375-85. PubMed ID: 26219721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic characterization of hypophosphatasia mutations with physiological substrates.
    Di Mauro S; Manes T; Hessle L; Kozlenkov A; Pizauro JM; Hoylaerts MF; Millán JL
    J Bone Miner Res; 2002 Aug; 17(8):1383-91. PubMed ID: 12162492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation.
    Ciancaglini P; Simão AM; Camolezi FL; Millán JL; Pizauro JM
    Braz J Med Biol Res; 2006 May; 39(5):603-10. PubMed ID: 16648897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins].
    Wolf C; Quinn P; Koumanov K; Chachaty C; Tenchov B
    J Soc Biol; 1999; 193(2):117-23. PubMed ID: 10451343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rafts: scale-dependent, active lipid organization at the cell surface.
    Mayor S; Rao M
    Traffic; 2004 Apr; 5(4):231-40. PubMed ID: 15030564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct membrane localization and kinase association of the two isoforms of CD58.
    Ariel O; Kukulansky T; Raz N; Hollander N
    Cell Signal; 2004 Jun; 16(6):667-73. PubMed ID: 15093607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid rafts-protein association and the regulation of protein activity.
    Lucero HA; Robbins PW
    Arch Biochem Biophys; 2004 Jun; 426(2):208-24. PubMed ID: 15158671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPI-anchored proteins and lipid rafts.
    Sangiorgio V; Pitto M; Palestini P; Masserini M
    Ital J Biochem; 2004 Jul; 53(2):98-111. PubMed ID: 15646015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.