These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 26219750)
1. Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu(111) surfaces. Tafreshi SS; Roldan A; de Leeuw NH Phys Chem Chem Phys; 2015 Sep; 17(33):21533-46. PubMed ID: 26219750 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insight into the hydrazine decomposition on Rh(111): effect of reaction intermediate on catalytic activity. Deng Z; Lu X; Wen Z; Wei S; Liu Y; Fu D; Zhao L; Guo W Phys Chem Chem Phys; 2013 Oct; 15(38):16172-82. PubMed ID: 23990024 [TBL] [Abstract][Full Text] [Related]
3. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
4. Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces. Muttaqien F; Hamamoto Y; Inagaki K; Morikawa Y J Chem Phys; 2014 Jul; 141(3):034702. PubMed ID: 25053329 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic study of hydrazine decomposition on Ir(111). Lu X; Francis S; Motta D; Dimitratos N; Roldan A Phys Chem Chem Phys; 2020 Feb; 22(7):3883-3896. PubMed ID: 32040127 [TBL] [Abstract][Full Text] [Related]
6. Reaction pathways of 2-iodoacetic acid on Cu(100): coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates. Lin YS; Lin JS; Liao YH; Yang CM; Kuo CW; Lin HP; Fan LJ; Yang YW; Lin JL Langmuir; 2010 Jun; 26(11):8218-25. PubMed ID: 20356026 [TBL] [Abstract][Full Text] [Related]
7. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces. Hibbitts D; Iglesia E Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328 [TBL] [Abstract][Full Text] [Related]
8. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001). Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007 [TBL] [Abstract][Full Text] [Related]
9. Micro-kinetic simulations of the catalytic decomposition of hydrazine on the Cu(111) surface. Tafreshi SS; Roldan A; de Leeuw NH Faraday Discuss; 2017 Apr; 197():41-57. PubMed ID: 28181610 [TBL] [Abstract][Full Text] [Related]
10. Low Barrier Carbon Induced CO Dissociation on Stepped Cu. Ng ML; Abild-Pedersen F; Kaya S; Mbuga F; Ogasawara H; Nilsson A Phys Rev Lett; 2015 Jun; 114(24):246101. PubMed ID: 26196988 [TBL] [Abstract][Full Text] [Related]
11. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis. Ge Q; Neurock M J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257 [TBL] [Abstract][Full Text] [Related]
12. Decomposition of methylamine on nitrogen atom modified Mo(100): a density functional theory study. Lv CQ; Liu JH; Guo Y; Wang GC Phys Chem Chem Phys; 2012 May; 14(19):6869-82. PubMed ID: 22495222 [TBL] [Abstract][Full Text] [Related]
13. Hydrazine N-N Bond Cleavage over Silica-Supported Tantalum-Hydrides. Jia HP; Gouré E; Solans-Monfort X; Llop Castelbou J; Chow C; Taoufik M; Eisenstein O; Quadrelli EA Inorg Chem; 2015 Dec; 54(24):11648-59. PubMed ID: 26650850 [TBL] [Abstract][Full Text] [Related]
14. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. Liu ZP; Hu P J Am Chem Soc; 2003 Feb; 125(7):1958-67. PubMed ID: 12580623 [TBL] [Abstract][Full Text] [Related]
15. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636 [TBL] [Abstract][Full Text] [Related]
16. Selective decomposition of hydrazine over metal free carbonaceous materials. Barlocco I; Bellomi S; Tumiati S; Fumagalli P; Dimitratos N; Roldan A; Villa A Phys Chem Chem Phys; 2022 Feb; 24(5):3017-3029. PubMed ID: 35037926 [TBL] [Abstract][Full Text] [Related]
17. Comparative density functional study of methanol decomposition on Cu4 and Co4 clusters. Mehmood F; Greeley J; Zapol P; Curtiss LA J Phys Chem B; 2010 Nov; 114(45):14458-66. PubMed ID: 20704288 [TBL] [Abstract][Full Text] [Related]
18. Insight into the general rule for the activation of the X-H bonds (X = C, N, O, S) induced by chemisorbed oxygen atoms. Xing B; Wang GC Phys Chem Chem Phys; 2014 Feb; 16(6):2621-9. PubMed ID: 24382588 [TBL] [Abstract][Full Text] [Related]
19. CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study. Chen ZX; Neyman KM; Lim KH; Rösch N Langmuir; 2004 Sep; 20(19):8068-77. PubMed ID: 15350074 [TBL] [Abstract][Full Text] [Related]
20. DFT and TPD study of the role of steps in the adsorption of CO on copper: Cu(4 1 0) versus Cu(1 0 0). Kokalj A; Makino T; Okada M J Phys Condens Matter; 2017 May; 29(19):194001. PubMed ID: 28291017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]