These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26220047)

  • 21. How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars.
    DeMartini JD; Foston M; Meng X; Jung S; Kumar R; Ragauskas AJ; Wyman CE
    Biotechnol Biofuels; 2015; 8():209. PubMed ID: 26664502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries.
    Dasari RK; Eric Berson R
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):289-99. PubMed ID: 18478396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbohydrate reactions during high-temperature steam treatment of aspen wood.
    Li J; Henriksson G; Gellerstedt G
    Appl Biochem Biotechnol; 2005 Jun; 125(3):175-88. PubMed ID: 15917581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment.
    Biswas R; Teller PJ; Khan MU; Ahring BK
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32727071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature.
    Zhao Y; Wang Y; Zhu JY; Ragauskas A; Deng Y
    Biotechnol Bioeng; 2008 Apr; 99(6):1320-8. PubMed ID: 18023037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes?
    Esteghlalian AR; Bilodeau M; Mansfield SD; Saddler JN
    Biotechnol Prog; 2001; 17(6):1049-54. PubMed ID: 11735439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process.
    Kim KH; Tucker MP; Nguyen QA
    Biotechnol Prog; 2002; 18(3):489-94. PubMed ID: 12052064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility.
    Jin S; Zhang G; Zhang P; Fan S; Li F
    Bioresour Technol; 2015 Apr; 181():270-4. PubMed ID: 25661305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals.
    Teixeira RS; da Silva AS; Jang JH; Kim HW; Ishikawa K; Endo T; Lee SH; Bon EP
    Carbohydr Polym; 2015 Sep; 128():75-81. PubMed ID: 26005141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.
    Zakaria MR; Fujimoto S; Hirata S; Hassan MA
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1778-89. PubMed ID: 24908052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms.
    Li H; Pu Y; Kumar R; Ragauskas AJ; Wyman CE
    Biotechnol Bioeng; 2014 Mar; 111(3):485-92. PubMed ID: 24037461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(3):807-19. PubMed ID: 19504581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis.
    Jeya M; Nguyen NP; Moon HJ; Kim SH; Lee JK
    Bioresour Technol; 2010 Nov; 101(22):8742-9. PubMed ID: 20609581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cobalt-60 gamma-ray irradiation pretreatment and sludge protein for enhancing enzymatic saccharification of hybrid poplar sawdust.
    Xiang Y; Xiang Y; Wang L
    Bioresour Technol; 2016 Dec; 221():9-14. PubMed ID: 27631888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP).
    Zhang W; Sathitsuksanoh N; Barone JR; Renneckar S
    Bioresour Technol; 2016 Jan; 199():148-154. PubMed ID: 26384086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines.
    Duan X; Zhang C; Ju X; Li Q; Chen S; Wang J; Liu Z
    Bioresour Technol; 2013 Jul; 140():363-7. PubMed ID: 23708852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pretreatment by ultra-high pressure explosion with homogenizer facilitates cellulase digestion of sugarcane bagasses.
    Chen D; Guo Y; Huang R; Lu Q; Huang J
    Bioresour Technol; 2010 Jul; 101(14):5592-600. PubMed ID: 20206506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(2):302-14. PubMed ID: 19301243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural network prediction of biomass digestibility based on structural features.
    O'Dwyer JP; Zhu L; Granda CB; Chang VS; Holtzapple MT
    Biotechnol Prog; 2008; 24(2):283-92. PubMed ID: 18220407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.
    Laureano-Perez L; Dale BE; Zhu L; O'Dwyer JP; Holtzapple M
    Biotechnol Prog; 2006; 22(3):835-41. PubMed ID: 16739968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.