BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26220210)

  • 1. Hyperspectral wide gap second derivative analysis for in vivo detection of cervical intraepithelial neoplasia.
    Zheng W; Wang C; Chang S; Zhang S; Xu RX
    J Biomed Opt; 2015 Dec; 20(12):121303. PubMed ID: 26220210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale hyperspectral imaging of cervical neoplasia.
    Wang C; Zheng W; Bu Y; Chang S; Zhang S; Xu RX
    Arch Gynecol Obstet; 2016 Jun; 293(6):1309-17. PubMed ID: 26446578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fusion-based approach for uterine cervical cancer histology image classification.
    De S; Stanley RJ; Lu C; Long R; Antani S; Thoma G; Zuna R
    Comput Med Imaging Graph; 2013; 37(7-8):475-87. PubMed ID: 24075360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy.
    Collier T; Follen M; Malpica A; Richards-Kortum R
    Appl Opt; 2005 Apr; 44(11):2072-81. PubMed ID: 15835356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated image analysis of digital colposcopy for the detection of cervical neoplasia.
    Park SY; Follen M; Milbourne A; Rhodes H; Malpica A; MacKinnon N; MacAulay C; Markey MK; Richards-Kortum R
    J Biomed Opt; 2008; 13(1):014029. PubMed ID: 18315387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study.
    Huh WK; Cestero RM; Garcia FA; Gold MA; Guido RS; McIntyre-Seltman K; Harper DM; Burke L; Sum ST; Flewelling RF; Alvarez RD
    Am J Obstet Gynecol; 2004 May; 190(5):1249-57. PubMed ID: 15167826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse reflectance patterns in cervical spectroscopy.
    MarĂ­n NM; Milbourne A; Rhodes H; Ehlen T; Miller D; Benedet L; Richards-Kortum R; Follen M
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S116-20. PubMed ID: 16165197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia.
    Schomacker KT; Meese TM; Jiang C; Abele CC; Dickson K; Sum ST; Flewelling RF
    J Biomed Opt; 2006; 11(3):34009. PubMed ID: 16822059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal excitation wavelengths for discrimination of cervical neoplasia.
    Chang SK; Follen M; Malpica A; Utzinger U; Staerkel G; Cox D; Atkinson EN; MacAulay C; Richards-Kortum R
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1102-11. PubMed ID: 12374334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical study of quantitative diagnosis of early cervical cancer based on the classification of acetowhitening kinetics.
    Wu T; Cheung TH; Yim SF; Qu JY
    J Biomed Opt; 2010; 15(2):026001. PubMed ID: 20459246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cervicitis in the Raman-based optical diagnosis of cervical intraepithelial neoplasia.
    Martinho Hda S; Monteiro da Silva CM; Yassoyama MC; Andrade Pde O; Bitar RA; Santo AM; Arisawa EA; Martin AA
    J Biomed Opt; 2008; 13(5):054029. PubMed ID: 19021409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral imaging and quantitative analysis for prostate cancer detection.
    Akbari H; Halig LV; Schuster DM; Osunkoya A; Master V; Nieh PT; Chen GZ; Fei B
    J Biomed Opt; 2012 Jul; 17(7):076005. PubMed ID: 22894488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial neural net construction for the detection of cervical intraepithelial neoplasia by fluorescence imaging.
    Parker MF; Mooradian GC; Okimoto GS; O'Connor DM; Miyazawa K; Saggese SJ
    Am J Obstet Gynecol; 2002 Aug; 187(2):398-402. PubMed ID: 12193932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using acetowhite opacity index for detecting cervical intraepithelial neoplasia.
    Li W; Venkataraman S; Gustafsson U; Oyama JC; Ferris DG; Lieberman RW
    J Biomed Opt; 2009; 14(1):014020. PubMed ID: 19256708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time in-vivo microscopic imaging of the cervix using confocal laser endomicroscopy: preliminary observations and feasibility study.
    Degueldre M; Vandromme J; de Wind A; Feoli F
    Eur J Cancer Prev; 2016 Jul; 25(4):335-43. PubMed ID: 26287698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer.
    Collier T; Guillaud M; Follen M; Malpica A; Richards-Kortum R
    J Biomed Opt; 2007; 12(2):024021. PubMed ID: 17477736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images.
    Gu J; Fu CY; Ng BK; Liu LB; Lim-Tan SK; Lee CG
    PLoS One; 2015; 10(5):e0125706. PubMed ID: 25966026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic efficacy of computer extracted image features in optical coherence tomography of the precancerous cervix.
    Kang W; Qi X; Tresser NJ; Kareta M; Belinson JL; Rollins AM
    Med Phys; 2011 Jan; 38(1):107-13. PubMed ID: 21361180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital holographic microscopy as screening tool for cervical cancer preliminary study.
    Benzerdjeb N; Garbar C; Camparo P; Sevestre H
    Cancer Cytopathol; 2016 Aug; 124(8):573-80. PubMed ID: 27136615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern Classification of Images from Acetic Acid-Based Cervical Cancer Screening: A Review.
    Kudva V; Prasad K
    Crit Rev Biomed Eng; 2018; 46(2):117-133. PubMed ID: 30055529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.