These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Multimodal optical imaging of the oculofacial region using a solid tissue-simulating facial phantom. Ediriwickrema LS; Sung S; Mattick KC; An MB; Malley C; Kirk SD; Devineni D; Lee JM; Kennedy GT; Choi B; Durkin AJ J Biomed Opt; 2024 Aug; 29(8):086002. PubMed ID: 39091279 [TBL] [Abstract][Full Text] [Related]
23. Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial. Leproux A; O'Sullivan TD; Cerussi A; Durkin A; Hill B; Hylton N; Yodh AG; Carp SA; Boas D; Jiang S; Paulsen KD; Pogue B; Roblyer D; Yang W; Tromberg BJ J Biomed Opt; 2017 Dec; 22(12):121604. PubMed ID: 29389104 [TBL] [Abstract][Full Text] [Related]
24. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy. Hennessy R; Goth W; Sharma M; Markey MK; Tunnell JW J Biomed Opt; 2014; 19(10):107002. PubMed ID: 25349033 [TBL] [Abstract][Full Text] [Related]
25. A solid tissue phantom for photon migration studies. Cubeddu R; Pifferi A; Taroni P; Torricelli A; Valentini G Phys Med Biol; 1997 Oct; 42(10):1971-9. PubMed ID: 9364593 [TBL] [Abstract][Full Text] [Related]
26. Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials. Qin J; Lu R Appl Opt; 2006 Nov; 45(32):8366-73. PubMed ID: 17068584 [TBL] [Abstract][Full Text] [Related]
27. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. Pogue BW; Patterson MS J Biomed Opt; 2006; 11(4):041102. PubMed ID: 16965130 [TBL] [Abstract][Full Text] [Related]
28. Optical detection of middle ear infection using spectroscopic techniques: phantom experiments. Zhang H; Huang J; Li T; Svanberg S; Svanberg K J Biomed Opt; 2015 May; 20(5):57001. PubMed ID: 25938207 [TBL] [Abstract][Full Text] [Related]
29. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm. Salo D; Zhang H; Kim DM; Berezin MY J Biomed Opt; 2014 Aug; 19(8):086008. PubMed ID: 25104414 [TBL] [Abstract][Full Text] [Related]
30. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering. Bremmer RH; van Gemert MJ; Faber DJ; van Leeuwen TG; Aalders MC J Biomed Opt; 2013 Aug; 18(8):87007. PubMed ID: 23986392 [TBL] [Abstract][Full Text] [Related]
32. Detecting structural information of scatterers using spatial frequency domain imaging. Bodenschatz N; Krauter P; Nothelfer S; Foschum F; Bergmann F; Liemert A; Kienle A J Biomed Opt; 2015 Nov; 20(11):116006. PubMed ID: 26590206 [TBL] [Abstract][Full Text] [Related]
33. Development of a finger joint phantom for evaluation of frequency domain measurement systems. Netz UJ; Scheel AK; Beuthan J; Hielscher AH Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1937-40. PubMed ID: 17946924 [TBL] [Abstract][Full Text] [Related]
34. A phantom for the testing and calibration of near infra-red spectrometers. Firbank M; Delpy DT Phys Med Biol; 1994 Sep; 39(9):1509-13. PubMed ID: 15552120 [TBL] [Abstract][Full Text] [Related]
36. A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom. Correia T; Banga A; Everdell NL; Gibson AP; Hebden JC Phys Med Biol; 2009 Oct; 54(20):6277-86. PubMed ID: 19794240 [TBL] [Abstract][Full Text] [Related]
37. Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media. Pifferi A; Torricelli A; Taroni P; Comelli D; Bassi A; Cubeddu R Rev Sci Instrum; 2007 May; 78(5):053103. PubMed ID: 17552808 [TBL] [Abstract][Full Text] [Related]
38. Experimental verification of conditions for near infrared spectroscopy (NIRS). Klaessens JH; Thijssen JM; Hopman JC; Liem KD Technol Health Care; 2003; 11(1):53-60. PubMed ID: 12590158 [TBL] [Abstract][Full Text] [Related]