These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26220565)

  • 21. Corannulene-Based Electron Acceptors: Combining Modular and Practical Synthesis with Electron Affinity and Solubility.
    Barát V; Budanovic M; Tam SM; Huh J; Webster RD; Stuparu MC
    Chemistry; 2020 Mar; 26(15):3231-3235. PubMed ID: 31975463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of polycyclic aromatic hydrocarbons on detection sensitivity of ultratrace nitroaromatic compounds.
    Zhang HX; Chen Q; Wen R; Hu JS; Wan LJ
    Anal Chem; 2007 Mar; 79(5):2179-83. PubMed ID: 17269652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does the concept of Clar's aromatic sextet work for dicationic forms of polycyclic aromatic hydrocarbons?--testing the model against charged systems in singlet and triplet states.
    Dominikowska J; Palusiak M
    Phys Chem Chem Phys; 2011 Jul; 13(25):11976-84. PubMed ID: 21614377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation and Reactivity of 1-Imidocarbenium Cations in the Friedel-Crafts-type Reaction.
    Adamek J; Mazurkiewicz R; Węgrzyk-Schlieter A
    ACS Omega; 2022 Aug; 7(34):30486-30494. PubMed ID: 36061720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation, X-ray structures, and electronic spectra of reactive intermediates in Friedel-Crafts acylations.
    Davlieva MG; Lindeman SV; Neretin IS; Kochi JK
    J Org Chem; 2005 May; 70(10):4013-21. PubMed ID: 15876090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ability of polycyclic aromatic hydrocarbons to induce 7-ethoxyresorufin-o-deethylase activity in a trout liver cell line.
    Bols NC; Schirmer K; Joyce EM; Dixon DG; Greenberg BM; Whyte JJ
    Ecotoxicol Environ Saf; 1999 Sep; 44(1):118-28. PubMed ID: 10499998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophile affinity: quantifying reactivity for the bromination of arenes.
    Galabov B; Koleva G; Schaefer HF; Schleyer Pv
    J Org Chem; 2010 May; 75(9):2813-9. PubMed ID: 20356314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into metal-pi arene interactions of the highly Lewis acidic Rh2(4+) core with a broad set of pi-ligands: from ethylene to corannulene and C60-fullerene.
    Rogachev AY; Petrukhina MA
    J Phys Chem A; 2009 May; 113(19):5743-53. PubMed ID: 19382775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anion mediated structural motifs in silver(I) complexes with corannulene.
    Elliott EL; Hernández GA; Linden A; Siegel JS
    Org Biomol Chem; 2005 Feb; 3(3):407-13. PubMed ID: 15678177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2011 Jun; 115(22):5547-59. PubMed ID: 21557589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixed-Valence BN-Doped Corannulene Trimer Radical Cations.
    Gao Y; Liu Z; Li T; Zhao W
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202314006. PubMed ID: 37847644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Buckybowls: Corannulene and Its Derivatives.
    Li X; Kang F; Inagaki M
    Small; 2016 Jun; 12(24):3206-23. PubMed ID: 27136669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CH/pi interactions in methane clusters with polycyclic aromatic hydrocarbons.
    Tsuzuki S; Honda K; Fujii A; Uchimaru T; Mikami M
    Phys Chem Chem Phys; 2008 May; 10(19):2860-5. PubMed ID: 18465004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogen-Containing Buckybowl.
    Tokimaru Y; Ito S; Nozaki K
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9818-9822. PubMed ID: 29878551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pi-activated alcohols: an emerging class of alkylating agents for catalytic Friedel-Crafts reactions.
    Bandini M; Tragni M
    Org Biomol Chem; 2009 Apr; 7(8):1501-7. PubMed ID: 19343234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid, microwave-assisted perdeuteration of polycyclic aromatic hydrocarbons.
    Greene AK; Scott LT
    J Org Chem; 2013 Mar; 78(5):2139-43. PubMed ID: 23121393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tetrathienyl Corannulene Compounds with Highly Sensitive Photochromism.
    Yamada M; Sawazaki T; Fujita M; Asanoma F; Nishikawa Y; Kawai T
    Chemistry; 2022 Sep; 28(49):e202201286. PubMed ID: 35707947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of bismuth(III) derivatives in ionic liquids: novel and recyclable catalytic systems for Friedel-Crafts acylation of aromatic compounds.
    Gmouh S; Yang H; Vaultier M
    Org Lett; 2003 Jun; 5(13):2219-22. PubMed ID: 12816413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A highly efficient Friedel-Crafts reaction of 3-hydroxyoxindoles and aromatic compounds to 3,3-diaryl and 3-alkyl-3-aryloxindoles catalyzed by Hg(ClO4)2·3H2O.
    Zhou F; Cao ZY; Zhang J; Yang HB; Zhou J
    Chem Asian J; 2012 Jan; 7(1):233-41. PubMed ID: 22125287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diels-Alder reactions of inert aromatic compounds within a self-assembled coordination cage.
    Horiuchi S; Murase T; Fujita M
    Chem Asian J; 2011 Jul; 6(7):1839-47. PubMed ID: 21337526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.