These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26220591)

  • 1. Surrogate modeling of deformable joint contact using artificial neural networks.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2015 Sep; 37(9):885-91. PubMed ID: 26220591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Open-Source Toolbox for Surrogate Modeling of Joint Contact Mechanics.
    Eskinazi I; Fregly BJ
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):269-77. PubMed ID: 26186761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    J Biomech Eng; 2009 Apr; 131(4):041010. PubMed ID: 19275439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surrogate articular contact models for computationally efficient multibody dynamic simulations.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    Med Eng Phys; 2010 Jul; 32(6):584-94. PubMed ID: 20236853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.
    Halloran JP; Easley SK; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2005 Oct; 127(5):813-8. PubMed ID: 16248311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a Surrogate Contact Model in Force-Dependent Kinematic Simulations of Total Knee Replacement.
    Marra MA; Andersen MS; Damsgaard M; Koopman BFJM; Janssen D; Verdonschot N
    J Biomech Eng; 2017 Aug; 139(8):. PubMed ID: 28462424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower extremity joint torque predicted by using artificial neural network during vertical jump.
    Liu Y; Shih SM; Tian SL; Zhong YJ; Li L
    J Biomech; 2009 May; 42(7):906-11. PubMed ID: 19261287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multibody dynamic simulation of knee contact mechanics.
    Bei Y; Fregly BJ
    Med Eng Phys; 2004 Nov; 26(9):777-89. PubMed ID: 15564115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Cervical Spine Compression and Shear in Helicopter Helmeted Conditions Using Artificial Neural Networks.
    Moore CAB; Barrett JM; Healey L; Callaghan JP; Fischer SL
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):154-166. PubMed ID: 34092207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of estimating isokinetic knee torque using a neural network model.
    Hahn ME
    J Biomech; 2007; 40(5):1107-14. PubMed ID: 16780848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network approach for determining gait modifications to reduce the contact force in knee joint implant.
    Ardestani MM; Chen Z; Wang L; Lian Q; Liu Y; He J; Li D; Jin Z
    Med Eng Phys; 2014 Oct; 36(10):1253-65. PubMed ID: 25066584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2018 Apr; 54():56-64. PubMed ID: 29487037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts.
    Chen Z; Zhang X; Ardestani MM; Wang L; Liu Y; Lian Q; He J; Li D; Jin Z
    Proc Inst Mech Eng H; 2014 Jun; 228(6):564-575. PubMed ID: 24878735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.
    Arbabi V; Pouran B; Weinans H; Zadpoor AA
    J Biomech; 2016 Sep; 49(13):2799-2805. PubMed ID: 27393413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.
    Jung Y; Phan CB; Koo S
    J Biomech Eng; 2016 Feb; 138(2):021016. PubMed ID: 26720762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
    Hast MW; Piazza SJ
    J Biomech Eng; 2013 Feb; 135(2):021013. PubMed ID: 23445058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.
    Zhao D; Banks SA; Mitchell KH; D'Lima DD; Colwell CW; Fregly BJ
    J Orthop Res; 2007 Jun; 25(6):789-97. PubMed ID: 17343285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting sagittal plane biomechanics that minimize the axial knee joint contact force during walking.
    Miller RH; Brandon SC; Deluzio KJ
    J Biomech Eng; 2013 Jan; 135(1):011007. PubMed ID: 23363218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of knee replacement contact calculations to kinematic measurement errors.
    Fregly BJ; Banks SA; D'Lima DD; Colwell CW
    J Orthop Res; 2008 Sep; 26(9):1173-9. PubMed ID: 18383141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.