BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26220822)

  • 1. Continuous microfluidic fabrication of synthetic asymmetric vesicles.
    Lu L; Schertzer JW; Chiarot PR
    Lab Chip; 2015 Sep; 15(17):3591-9. PubMed ID: 26220822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles.
    London E
    Acc Chem Res; 2019 Aug; 52(8):2382-2391. PubMed ID: 31386337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Vesicles by Microfluidic Device.
    Vallejo D; Lee SH; Lee A
    Methods Mol Biol; 2017; 1572():489-510. PubMed ID: 28299707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dewetting-induced formation and mechanical properties of synthetic bacterial outer membrane models (GUVs) with controlled inner-leaflet lipid composition.
    Maktabi S; Schertzer JW; Chiarot PR
    Soft Matter; 2019 May; 15(19):3938-3948. PubMed ID: 31011738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-step assembly of asymmetric vesicles.
    Arriaga LR; Huang Y; Kim SH; Aragones JL; Ziblat R; Koehler SA; Weitz DA
    Lab Chip; 2019 Feb; 19(5):749-756. PubMed ID: 30672918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic fabrication of asymmetric giant lipid vesicles.
    Hu PC; Li S; Malmstadt N
    ACS Appl Mater Interfaces; 2011 May; 3(5):1434-40. PubMed ID: 21449588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation.
    Cheng HT; Megha ; London E
    J Biol Chem; 2009 Mar; 284(10):6079-92. PubMed ID: 19129198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating microfluidic generation, handling and analysis of biomimetic giant unilamellar vesicles.
    Paterson DJ; Reboud J; Wilson R; Tassieri M; Cooper JM
    Lab Chip; 2014 Jun; 14(11):1806-10. PubMed ID: 24789498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturised technologies for the development of artificial lipid bilayer systems.
    Zagnoni M
    Lab Chip; 2012 Mar; 12(6):1026-39. PubMed ID: 22301684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicles-on-a-chip: A universal microfluidic platform for the assembly of liposomes and polymersomes.
    Petit J; Polenz I; Baret JC; Herminghaus S; Bäumchen O
    Eur Phys J E Soft Matter; 2016 Jun; 39(6):59. PubMed ID: 27286954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double emulsions with controlled morphology by microgel scaffolding.
    Thiele J; Seiffert S
    Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.