These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Microfluidic fabrication of asymmetric giant lipid vesicles. Hu PC; Li S; Malmstadt N ACS Appl Mater Interfaces; 2011 May; 3(5):1434-40. PubMed ID: 21449588 [TBL] [Abstract][Full Text] [Related]
10. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions. Kobayashi I; Mukataka S; Nakajima M Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362 [TBL] [Abstract][Full Text] [Related]
11. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. Cheng HT; Megha ; London E J Biol Chem; 2009 Mar; 284(10):6079-92. PubMed ID: 19129198 [TBL] [Abstract][Full Text] [Related]
12. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions. Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267 [TBL] [Abstract][Full Text] [Related]
13. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Chae SK; Lee CH; Lee SH; Kim TS; Kang JY Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972 [TBL] [Abstract][Full Text] [Related]
14. Integrating microfluidic generation, handling and analysis of biomimetic giant unilamellar vesicles. Paterson DJ; Reboud J; Wilson R; Tassieri M; Cooper JM Lab Chip; 2014 Jun; 14(11):1806-10. PubMed ID: 24789498 [TBL] [Abstract][Full Text] [Related]
15. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588 [TBL] [Abstract][Full Text] [Related]
16. Miniaturised technologies for the development of artificial lipid bilayer systems. Zagnoni M Lab Chip; 2012 Mar; 12(6):1026-39. PubMed ID: 22301684 [TBL] [Abstract][Full Text] [Related]
17. Vesicles-on-a-chip: A universal microfluidic platform for the assembly of liposomes and polymersomes. Petit J; Polenz I; Baret JC; Herminghaus S; Bäumchen O Eur Phys J E Soft Matter; 2016 Jun; 39(6):59. PubMed ID: 27286954 [TBL] [Abstract][Full Text] [Related]
18. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches. Lai CW; Lin YH; Lee GB Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177 [TBL] [Abstract][Full Text] [Related]
19. Double emulsions with controlled morphology by microgel scaffolding. Thiele J; Seiffert S Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282 [TBL] [Abstract][Full Text] [Related]
20. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Xu JH; Li SW; Tan J; Wang YJ; Luo GS Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]