These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 26220991)
21. A modeling approach of the influence of local hydrodynamic conditions on larval dispersal at hydrothermal vents. Bailly-Bechet M; Kerszberg M; Gaill F; Pradillon F J Theor Biol; 2008 Dec; 255(3):320-31. PubMed ID: 18834891 [TBL] [Abstract][Full Text] [Related]
22. Survival and drifting patterns of grass carp eggs and larvae in response to interactions with flow and sediment in a laboratory flume. Prada AF; George AE; Stahlschmidt BH; Chapman DC; Tinoco RO PLoS One; 2018; 13(12):e0208326. PubMed ID: 30566492 [TBL] [Abstract][Full Text] [Related]
23. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Hata T; Madin JS; Cumbo VR; Denny M; Figueiredo J; Harii S; Thomas CJ; Baird AH Sci Rep; 2017 May; 7(1):2249. PubMed ID: 28533550 [TBL] [Abstract][Full Text] [Related]
24. The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume. Reidenbach MA; Koehl MA J Exp Biol; 2011 Sep; 214(Pt 18):3138-53. PubMed ID: 21865526 [TBL] [Abstract][Full Text] [Related]
25. Helical swimming can provide robust upwards transport for gravitactic single-cell algae; a mechanistic model. Bearon RN J Math Biol; 2013 Jun; 66(7):1341-59. PubMed ID: 22526839 [TBL] [Abstract][Full Text] [Related]
26. Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. Krug PJ Prog Mol Subcell Biol; 2006; 42():1-53. PubMed ID: 16805437 [TBL] [Abstract][Full Text] [Related]
27. Turbulence induces metabolically costly behaviors and inhibits food capture in oyster larvae, causing net energy loss. Fuchs HL; Specht JA; Adams DK; Christman AJ J Exp Biol; 2017 Oct; 220(Pt 19):3419-3431. PubMed ID: 28978637 [TBL] [Abstract][Full Text] [Related]
28. Turbulent flow reduces oxygen consumption in the labriform swimming shiner perch, van der Hoop JM; Byron ML; Ozolina K; Miller DL; Johansen JL; Domenici P; Steffensen JF J Exp Biol; 2018 Jun; 221(Pt 11):. PubMed ID: 29615520 [TBL] [Abstract][Full Text] [Related]
29. Effect of larval swimming in the western North Pacific subtropical gyre on the recruitment success of the Japanese eel. Chang YK; Miller MJ; Tsukamoto K; Miyazawa Y PLoS One; 2018; 13(12):e0208704. PubMed ID: 30571715 [TBL] [Abstract][Full Text] [Related]
30. Directed motion in the sea: efficient swimming by reef fish larvae. Armsworth PR J Theor Biol; 2001 May; 210(1):81-91. PubMed ID: 11343432 [TBL] [Abstract][Full Text] [Related]
31. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae. Queiroga H; Blanton J Adv Mar Biol; 2005; 47():107-214. PubMed ID: 15596167 [TBL] [Abstract][Full Text] [Related]
32. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait. Liao JC J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945 [TBL] [Abstract][Full Text] [Related]
34. The Kinematics and Dynamics of Li Y; Hou Y; Zhang B; Zou X; Johnson D; Wan F; Zhou C; Jin Y; Shi X Animals (Basel); 2022 Oct; 12(20):. PubMed ID: 36290229 [TBL] [Abstract][Full Text] [Related]
35. Dispersal patterns, active behaviour, and flow environment during early life history of coastal cold water fishes. Stanley R; Snelgrove PV; Deyoung B; Gregory RS PLoS One; 2012; 7(9):e46266. PubMed ID: 23029455 [TBL] [Abstract][Full Text] [Related]
36. Body dynamics and hydrodynamics of swimming fish larvae: a computational study. Li G; Müller UK; van Leeuwen JL; Liu H J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489 [TBL] [Abstract][Full Text] [Related]
37. Biomechanics of larval morphology affect swimming: insights from the sand dollars Dendraster excentricus. Chan KY Integr Comp Biol; 2012 Oct; 52(4):458-69. PubMed ID: 22753391 [TBL] [Abstract][Full Text] [Related]
38. Copepod flow modes and modulation: a modelling study of the water currents produced by an unsteadily swimming copepod. Jiang H; Strickler JR Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):1959-71. PubMed ID: 17475616 [TBL] [Abstract][Full Text] [Related]
39. Swimming in the upside down catfish Synodontis nigriventris: it matters which way is up. Blake RW; Chan KH J Exp Biol; 2007 Sep; 210(Pt 17):2979-89. PubMed ID: 17704073 [TBL] [Abstract][Full Text] [Related]
40. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.). McHenry MJ; Azizi E; Strother JA J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]