BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26221047)

  • 1. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.
    Addepalli B; Lesner NP; Limbach PA
    RNA; 2015 Oct; 21(10):1746-56. PubMed ID: 26221047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel ribonuclease activity of cusativin from Cucumis sativus for mapping nucleoside modifications in RNA.
    Addepalli B; Venus S; Thakur P; Limbach PA
    Anal Bioanal Chem; 2017 Sep; 409(24):5645-5654. PubMed ID: 28730304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the ribonuclease MC1 from bitter gourd seeds, complexed with 2'-UMP or 3'-UMP, reveal structural basis for uridine specificity.
    Suzuki A; Yao M; Tanaka I; Numata T; Kikukawa S; Yamasaki N; Kimura M
    Biochem Biophys Res Commun; 2000 Aug; 275(2):572-6. PubMed ID: 10964705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Gln9 and Phe80 to substrate binding in ribonuclease MC1 from bitter gourd seeds.
    Numata T; Kimura M
    J Biochem; 2001 Nov; 130(5):621-6. PubMed ID: 11686924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity.
    Numata T; Suzuki A; Yao M; Tanaka I; Kimura M
    Biochemistry; 2001 Jan; 40(2):524-30. PubMed ID: 11148047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining recombinant ribonuclease U2 and protein phosphatase for RNA modification mapping by liquid chromatography-mass spectrometry.
    Houser WM; Butterer A; Addepalli B; Limbach PA
    Anal Biochem; 2015 Jun; 478():52-8. PubMed ID: 25797349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced detection of post-transcriptional modifications using a mass-exclusion list strategy for RNA modification mapping by LC-MS/MS.
    Cao X; Limbach PA
    Anal Chem; 2015 Aug; 87(16):8433-40. PubMed ID: 26176336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei.
    Krog JS; Español Y; Giessing AM; Dziergowska A; Malkiewicz A; Ribas de Pouplana L; Kirpekar F
    FEBS J; 2011 Dec; 278(24):4782-96. PubMed ID: 22040320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNase MC2: a new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways.
    Fang EF; Zhang CZ; Fong WP; Ng TB
    Apoptosis; 2012 Apr; 17(4):377-87. PubMed ID: 22134530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases.
    Thakur P; Estevez M; Lobue PA; Limbach PA; Addepalli B
    Analyst; 2020 Feb; 145(3):816-827. PubMed ID: 31825413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches.
    Felden B; Hanawa K; Atkins JF; Himeno H; Muto A; Gesteland RF; McCloskey JA; Crain PF
    EMBO J; 1998 Jun; 17(11):3188-96. PubMed ID: 9606200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA Cleavage Properties of Nucleobase-Specific RNase MC1 and Cusativin Are Determined by the Dinucleotide-Binding Interactions in the Enzyme-Active Site.
    Thakur P; Atway J; Limbach PA; Addepalli B
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry.
    Mengel-Jørgensen J; Kirpekar F
    Nucleic Acids Res; 2002 Dec; 30(23):e135. PubMed ID: 12466567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a ribonuclease from the seeds of bitter gourd (Momordica charantia) at 1.75 A resolution.
    Nakagawa A; Tanaka I; Sakai R; Nakashima T; Funatsu G; Kimura M
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):253-60. PubMed ID: 10446375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of RNA sequence isomer by isotope labeling and LC-MS/MS.
    Li S; Limbach PA
    J Mass Spectrom; 2014 Nov; 49(11):1191-8. PubMed ID: 25395135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of 3'-phosphate group by bacterial alkaline phosphatase improves oligonucleotide sequence coverage of RNase digestion products analyzed by collision-induced dissociation mass spectrometry.
    Krivos KL; Addepalli B; Limbach PA
    Rapid Commun Mass Spectrom; 2011 Dec; 25(23):3609-16. PubMed ID: 22095510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced expression and purification of nucleotide-specific ribonucleases MC1 and Cusativin.
    Grünberg S; Wolf EJ; Jin J; Ganatra MB; Becker K; Ruse C; Taron CH; Corrêa IR; Yigit E
    Protein Expr Purif; 2022 Feb; 190():105987. PubMed ID: 34637916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry.
    Ross R; Cao X; Yu N; Limbach PA
    Methods; 2016 Sep; 107():73-8. PubMed ID: 27033178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry.
    Patteson KG; Rodicio LP; Limbach PA
    Nucleic Acids Res; 2001 May; 29(10):E49-9. PubMed ID: 11353094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acids conserved at the C-terminal half of the ribonuclease T2 family contribute to protein stability of the enzymes.
    Kimura K; Numata T; Kakuta Y; Kimura M
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1748-57. PubMed ID: 15322360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.