These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Ge Z; Liu S Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663 [TBL] [Abstract][Full Text] [Related]
3. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Li J; Ke W; Li H; Zha Z; Han Y; Ge Z Adv Healthc Mater; 2015 Oct; 4(15):2206-19. PubMed ID: 26346421 [TBL] [Abstract][Full Text] [Related]
4. Self-regulated multifunctional collaboration of targeted nanocarriers for enhanced tumor therapy. Gao H; Cheng T; Liu J; Liu J; Yang C; Chu L; Zhang Y; Ma R; Shi L Biomacromolecules; 2014 Oct; 15(10):3634-42. PubMed ID: 25308336 [TBL] [Abstract][Full Text] [Related]
5. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Liu Y; Feng L; Liu T; Zhang L; Yao Y; Yu D; Wang L; Zhang N Nanoscale; 2014 Mar; 6(6):3231-42. PubMed ID: 24500240 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro. Zhang ZY; Xu YD; Ma YY; Qiu LL; Wang Y; Kong JL; Xiong HM Angew Chem Int Ed Engl; 2013 Apr; 52(15):4127-31. PubMed ID: 23463695 [No Abstract] [Full Text] [Related]
8. pH- and NIR light responsive nanocarriers for combination treatment of chemotherapy and photodynamic therapy. Wang S; Yang W; Cui J; Li X; Dou Y; Su L; Chang J; Wang H; Li X; Zhang B Biomater Sci; 2016 Feb; 4(2):338-45. PubMed ID: 26623461 [TBL] [Abstract][Full Text] [Related]
9. Hyperbranched PEG-based supramolecular nanoparticles for acid-responsive targeted drug delivery. Chen X; Yao X; Wang C; Chen L; Chen X Biomater Sci; 2015 Jun; 3(6):870-8. PubMed ID: 26221847 [TBL] [Abstract][Full Text] [Related]
10. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Fleige E; Quadir MA; Haag R Adv Drug Deliv Rev; 2012 Jun; 64(9):866-84. PubMed ID: 22349241 [TBL] [Abstract][Full Text] [Related]
11. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S Biomaterials; 2009 Jun; 30(16):3009-19. PubMed ID: 19250665 [TBL] [Abstract][Full Text] [Related]
12. Drug Delivery Nanocarriers from a Fully Degradable PEG-Conjugated Polyester with a Reduction-Responsive Backbone. Yameen B; Vilos C; Choi WI; Whyte A; Huang J; Pollit L; Farokhzad OC Chemistry; 2015 Aug; 21(32):11325-9. PubMed ID: 26177931 [TBL] [Abstract][Full Text] [Related]
13. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Wu W; Luo L; Wang Y; Wu Q; Dai HB; Li JS; Durkan C; Wang N; Wang GX Theranostics; 2018; 8(11):3038-3058. PubMed ID: 29896301 [TBL] [Abstract][Full Text] [Related]
14. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. van Vlerken LE; Vyas TK; Amiji MM Pharm Res; 2007 Aug; 24(8):1405-14. PubMed ID: 17393074 [TBL] [Abstract][Full Text] [Related]
15. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery. Liu GY; Li M; Zhu CS; Jin Q; Zhang ZC; Ji J Macromol Biosci; 2014 Sep; 14(9):1280-90. PubMed ID: 24866398 [TBL] [Abstract][Full Text] [Related]
16. Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anticancer drugs. Chen W; Zou Y; Meng F; Cheng R; Deng C; Feijen J; Zhong Z Biomacromolecules; 2014 Mar; 15(3):900-7. PubMed ID: 24460130 [TBL] [Abstract][Full Text] [Related]
17. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Hadinoto K; Sundaresan A; Cheow WS Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180 [TBL] [Abstract][Full Text] [Related]
18. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bae Y; Nishiyama N; Fukushima S; Koyama H; Yasuhiro M; Kataoka K Bioconjug Chem; 2005; 16(1):122-30. PubMed ID: 15656583 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Guo M; Que C; Wang C; Liu X; Yan H; Liu K Biomaterials; 2011 Jan; 32(1):185-94. PubMed ID: 21067808 [TBL] [Abstract][Full Text] [Related]
20. A 5-fluorouracil-loaded pH-responsive dendrimer nanocarrier for tumor targeting. Jin Y; Ren X; Wang W; Ke L; Ning E; Du L; Bradshaw J Int J Pharm; 2011 Nov; 420(2):378-84. PubMed ID: 21925254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]